数学教案-探索多边形内角和_第1页
数学教案-探索多边形内角和_第2页
数学教案-探索多边形内角和_第3页
数学教案-探索多边形内角和_第4页
数学教案-探索多边形内角和_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学教案探索多边形内角和课题探索多边形内角和教学目标知识目标1.探索多边形内角和定义、公式2.正多边形定义能力目标1.发展学生的合情推理意识、主动探索的习惯2.发展学生的说理能力和简单的推理意识及能力德育目标培养用多边形美花生活的意识教学重点多边形内角和公式的推导学难点多边形内角和公式的简单运用教学方法探索、讨论、启发、讲授教学手段利用学生剪纸、投影仪进行教学教学过程:一、引入:1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。二、多边形内角和公式:1、三角形的内角和是多少度?任意四边形的内角

2、和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)(1)量出每个内角度数然后相加为540°;(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180&

3、#176;-360°=540°(如图二);(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°-180°=540°(如图三);(5)六边形可怎样剪成三角形求内角和?n边形呢?(6)总结规律:多边形内角和为(n-2)×180°(n3)。3、议一议:(1)过四边形一个顶点的对角线把四边形分成两个三角形;(2)过五边形一个顶点的对角线把五边形分成( )个三角形;(3)过六边形一个顶点的对角线把六边形分成( )个三角形。(4)过n边形一个顶点的对角线把n边形分成( )个三角形;二、

4、正多边形定义:1、 出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。3、填表:正多边形的边数34568n正多边形的内角和180°360°540°720°1080°正多边形每个内角的度数60°90°108°120°135°四、小结:主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。五、布置作业:课本P110、习题4、10 第1、2、3题。附:选用随堂练习:1、一个多边形的每个内角都是140º,它是( )边形?2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成( )个三角形。3、过六边形的一个顶点的对角线把它分成( )个三角形,过n边形的一个顶点的对角线把n边形分成( )个三角形。4、一个多边形的每个内角都是140°,这个多边形是( )边形。5、如果一个多边形的边数增加1,那么这时它的内角和增加了( )度。6、下列角能成为一个多边形的内角和的是( )A、270° B、560° C、1800° D、1900

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论