下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 平面向量16、向量:既有大小,又有方向的量 数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度 零向量:长度为的向量单位向量:长度等于个单位的向量平行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行相等向量:长度相等且方向相同的向量17、向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点三角形不等式: 运算性质:交换律:;结合律:;坐标运算:设,则18、向量减法运算:三角形法则的特点:共起点,连终点,方向指向被减向量坐标运算:设,则设、两点的坐标分别为,则19、向量数乘运算:实数与向量的积是一个向量的运算叫做向量的数乘,记作;当时,的方向与的
2、方向相同;当时,的方向与的方向相反;当时,运算律:;坐标运算:设,则20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使设,其中,则当且仅当时,向量、共线21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使(不共线的向量、作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段上的一点,、的坐标分别是,当时,点的坐标是(当23、平面向量的数量积:零向量与任一向量的数量积为性质:设和都是非零向量,则当与同向时,;当与反向时,;或运算律:;坐标运算:设两个非零向量,则若,则,或 设,则设、都是非零向量,是与的夹角,则基础训练
3、A组一、选择题1化简得( )A B C D2设分别是与向的单位向量,则下列结论中正确的是( )A B C D3已知下列命题中:(1)若,且,则或,(2)若,则或(3)若不平行的两个非零向量,满足,则(4)若与平行,则其中真命题的个数是( )A B C D4下列命题中正确的是( )A若a×b0,则a0或b0 B若a×b0,则abC若ab,则a在b上的投影为|a| D若ab,则a×b(a×b)25已知平面向量,且,则( )A B C D6已知向量,向量则的最大值,最小值分别是( )A B C D二、填空题1若=,=,则=_2平面向量中,若,=1,且,则向量=
4、_。3若,,且与的夹角为,则 。4把平面上一切单位向量归结到共同的始点,那么这些向量的终点。所构成的图形是_。5已知与,要使最小,则实数的值为_。三、解答题AGEFCBD1如图,中,分别是的中点,为交点,若=,=,试以,为基底表示、2已知向量的夹角为,,求向量的模 3已知点,且原点分的比为,又,求在上的投影。4已知,当为何值时,(1)与垂直?(2)与平行?平行时它们是同向还是反向?一、选择题1下列命题中正确的是( )A BC D2设点,,若点在直线上,且,则点的坐标为( )A B C或 D无数多个3若平面向量与向量的夹角是,且,则( )A B C D4向量,若与平行,则等于A B C D5若是非零向量且满足, ,则与的夹角是( )A B C D6设,且,则锐角为( )A B C D二、填空题1若,且,则向量与的夹角为2已知向量,若用和表示,则=_。3若,,与的夹角为,若,则的值为 4若菱形的边长为,则_。5若=,=,则在上的投影为_。三、解答题1求与向量,夹角相等的单位向量的坐标2试证明:平行四边形对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东警官学院《生物质能转化原理与技术》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《实验安全与现场急救》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《广告设计与策划》2023-2024学年第一学期期末试卷
- 广东财贸职业学院《英语综合技能2》2023-2024学年第一学期期末试卷
- 《危害申报管理》课件
- 感恩企业培训课件
- 《化学动力学的任务》课件
- 共青科技职业学院《工业机器人应用》2023-2024学年第一学期期末试卷
- 赣州职业技术学院《中国通史现代》2023-2024学年第一学期期末试卷
- 皮带系统安全培训课件
- 2024年加油站的年度工作总结范文(2篇)
- 甲醇制氢生产装置计算书
- T-JSREA 32-2024 电化学储能电站消防验收规范
- 福建省晋江市松熹中学2024-2025学年七年级上学期第二次月考语文试题
- 【MOOC】隧道工程-中南大学 中国大学慕课MOOC答案
- ISO27001信息安全管理体系培训资料
- 红色经典影片与近现代中国发展学习通超星期末考试答案章节答案2024年
- 剧作策划与管理智慧树知到期末考试答案2024年
- 铁路基础知识考试题库500题(单选、多选、判断)
- 110kV变压器保护整定实例
- 销售顾问初级认证笔试题
评论
0/150
提交评论