版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录 上页 下页 返回 结束 .1第三节一、三重积分的概念三重积分的概念 二、三重积分的计算二、三重积分的计算三重积分 第十章 目录 上页 下页 返回 结束 .2一、三重积分的概念一、三重积分的概念 类似二重积分解决问题的思想, 采用kkkkv),(),(kkkkv引例引例: 设在空间有限闭区域 内分布着某种不均匀的物质,),(Czyx求分布在 内的物质的可得nk 10limM“大化小大化小, 常代变常代变, 近似和近似和, 求极限求极限”解决方法解决方法:质量 M .密度函数为目录 上页 下页 返回 结束 .3定义定义. 设,),( , ),(zyxzyxfkkknkkvf),(lim10存
2、在,),(zyxfvzyxfd),(称为体积元素体积元素, vd.dddzyx若对 作任意分割任意分割: 任意取点任意取点则称此极限为函数在 上的三重积分三重积分.在直角坐标系下常写作三重积分的性质与二重积分相似.性质性质: 例如 ),2,1(nkvk,),(kkkkv下列“乘中值定理中值定理.),(zyxf设在有界闭域 上连续,则存在,),(使得vzyxfd),(Vf),(V 为 的体积, 积和式” 极限记作记作目录 上页 下页 返回 结束 .4二、三重积分的计算二、三重积分的计算1. 利用直角坐标计算三重积分利用直角坐标计算三重积分方法方法1 . 投影法 (“先一后二”)方法方法2 . 截
3、面法 (“先二后一”) 方法方法3 . 三次积分法 ,0),(zyxf先假设连续函数 并将它看作某物体 通过计算该物体的质量引出下列各计算最后, 推广到一般可积函数的积分计算. 的密度函数 , 方法:目录 上页 下页 返回 结束 .5zxyDDyxdd 方法方法1. 投影法投影法 (“先一后二先一后二” ) Dyxyxzzyxz),(),(),(:21yxzzyxfyxzyxzddd),(),(),(21该物体的质量为vzyxfd),(),(),(21d),(yxzyxzzzyxfDyxzyxzzzyxfyx),(),(21d),(ddyxzyxfdd),(细长柱体微元的质量为),(2yxzz
4、 ),(1yxzz 微元线密度记作yxddO目录 上页 下页 返回 结束 .6ab方法方法2. 截面法截面法 (“先二后一先二后一”)bzaDyxz),(:为底, d z 为高的柱形薄片质量为zD以该物体的质量为vzyxfd),(bazDyxzyxfdd),(zDbayxzyxfzdd),(dzdzzDzDyxzyxfdd),(zzyxfd),(面密度zd记作xyzO目录 上页 下页 返回 结束 .7投影法方法方法3. 三次积分法三次积分法设区域:利用投影法结果 ,bxaxyyxyDyx)()(:),(21),(),(21yxzzyxz把二重积分化成二次积分即得:vzyxfd),(),(),(
5、21d),(ddyxzyxzDzzyxfyxvzyxfd),(),(),(21d),(yxzyxzzzyxf)()(21dxyxyybaxd目录 上页 下页 返回 结束 .8当被积函数在积分域上变号时, 因为),(zyxf2),(),(zyxfzyxf),(1zyxf),(2zyxf均为为非负函数根据重积分性质仍可用前面介绍的方法计算.2),(),(zyxfzyxf目录 上页 下页 返回 结束 .9小结小结: 三重积分的计算方法三重积分的计算方法方法方法1. “先一后二先一后二”方法方法2. “先二后一先二后一”方法方法3. “三次积分三次积分”),(),(21d),(ddyxzyxzDzzy
6、xfyxvzyxfd),(zDbayxzyxfzdd),(d),(),()()(2121d),(ddyxzyxzxyxybazzyxfyx具体计算时应根据vzyxfd),(vzyxfd),(三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择. 目录 上页 下页 返回 结束 .10其中 为三个坐标例例1. 计算三重积分,dddzyxx12zyx所围成的闭区域 .解解:zyxxddd)1(01021d)21 (dxyyxxxyxz210d1032d)2(41xxxxyxz210)1(021xy10 x )1(021dxy10d xx481面及平面1xyz121O目录 上页 下页 返
7、回 结束 .11xyz例例2. 计算三重积分,ddd2zyxz. 1:222222czbyax其中解解: :zyxzddd2cczczbazd)1(2222czc2222221:czbyaxDzzDyxddcczz d23154cbaabc用用“先二后一先二后一 ” zDzO目录 上页 下页 返回 结束 .12xyz2. 利用柱坐标计算三重积分利用柱坐标计算三重积分 ,),(3RzyxM设,代替用极坐标将yx),z(则就称为点M 的柱坐标.z200sinyzz cosx直角坐标与柱面坐标的关系:常数坐标面分别为圆柱面常数半平面常数z平面z),(zyxM)0 ,(yxO目录 上页 下页 返回 结
8、束 .13如图所示, 在柱面坐标系中体积元素为zvdddd因此zyxzyxfddd),(),(zF其中),sin,cos(),(zfzF适用范围适用范围:1) 积分域积分域表面用柱面坐标表示时方程简单方程简单 ;2) 被积函数被积函数用柱面坐标表示时变量互相分离变量互相分离.zdddzzddddxyzddO目录 上页 下页 返回 结束 .142axyzO其中 为例例3. 计算三重积分zyxyxzddd22xyx2220),0(, 0yaazz所解解: 在柱面坐标系下:cos202ddcos342032acos2020az 0及平面zvdddd20dazz0dzzddd2原式298a由柱面cos
9、2围成半圆柱体.目录 上页 下页 返回 结束 .15OOxyz例例4. 计算三重积分解解: 在柱面坐标系下h:hz42dhh2022d)4(124)41ln()41(4hhhhz h2020h202d120d,1ddd22yxzyxzyx422)0( hhz所围成 .与平面其中 由抛物面42zvdddd原式 =目录 上页 下页 返回 结束 .163. 利用球坐标计算三重积分利用球坐标计算三重积分 ,),(3RzyxM设),(z其柱坐标为就称为点M 的球坐标.直角坐标与球面坐标的关系,zOMzr),(r则0200rcossinrx sinsinry cosrz 坐标面分别为常数r球面常数半平面常
10、数锥面, rOM 令),(rMsinrcosrz MxyzO目录 上页 下页 返回 结束 .17rddrdd如图所示, 在球面坐标系中体积元素为dddsind2rrv 因此有zyxzyxfddd),(),(rF其中)cos,sinsin,cossin(),(rrrfrF适用范围适用范围:1) 积分域积分域表面用球面坐标表示时方程简单方程简单;2) 被积函数被积函数用球面坐标表示时变量互相分离变量互相分离.dddsin2rrxyzO目录 上页 下页 返回 结束 .18xyzO例例5. 计算三重积分,ddd)(222zyxzyx22yxz为锥面2222Rzyx解解: 在球面坐标系下:zyxzyxd
11、dd)(222所围立体.40Rr 020其中 与球面dddsind2rrv Rrr04d)22(515R40dsin20d4Rr 目录 上页 下页 返回 结束 .19例例6.求曲面)0()(32222azazyx所围立体体积.解解: 由曲面方程可知, 立体位于xOy面上部,cos0:3ar 利用对称性, 所求立体体积为vVdrrad3cos02dcossin32203a331a3cosar ,202020dsin20d4yOz面对称, 并与xOy面相切, 故在球坐标系下所围立体为且关于 xOz dddsind2rrv yzxaOr目录 上页 下页 返回 结束 .20内容小结内容小结zyxddd
12、zddddddsin2rr积分区域多由坐标面被积函数形式简洁, 或坐标系 体积元素 适用情况直角坐标系柱面坐标系球面坐标系* * 说明说明:三重积分也有类似二重积分的换元积分公式换元积分公式:),(),(wvuzyxJ对应雅可比行列式为*ddd),(ddd),(wvuJwvuFzyxzyxf变量可分离.围成 ;目录 上页 下页 返回 结束 .212,zxz1. 将. )(),(Czyxf用三次积分表示,2,0 xx,42, 1yxyvzyxfId),(其中 由所提示提示:20 xxy21212 zxI2d),(xzzyxf xy2121d20d x思考与练习思考与练习六个平面围成 ,:目录 上
13、页 下页 返回 结束 .222. 设, 1:222zyx计算vzyxzyxzd1) 1ln(222222提示提示: 利用对称性原式 = 122ddyxyx0奇函数222211222222d1) 1ln(yxyxzzyxzyxz目录 上页 下页 返回 结束 .233. 设 由锥面22yxz和球面4222zyx所围成 , 计算.d)(2vzyxI提示提示:zOxy24利用对称性vzyxd)(222vzxzyyxzyxId)222(222用球坐标 rr d420dsin4020d221564目录 上页 下页 返回 结束 .24作业作业P162 1(2),(3),(4); 4; 5; 7; 8; 9 (2); *10 (2) ; 11 (1), *(4)第四节 目录 上页 下页 返回 结束 .25备用题备用题 1. 计算,ddd12zyxxyI所围成. 其中 由1,1,12222yzxzxy分析分析:若用“先二后一”, 则有zxxyyIyDdd1d201zxxyyyDdd1d210计算较繁! 采用“三次积分”较好.1zxy11O目录 上页 下页 返回 结束 .26:4528 1122yzx2211xzx11xxx d1211zxxd2211yyzxd112222221,1,1yxzxzy 由所围, 故可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育法规真题练习试卷B卷附答案
- 2024年大、中容量数字程控交换机项目资金需求报告代可行性研究报告
- 2024年机械治疗及病房护理设备项目资金申请报告代可行性研究报告
- 幼儿园校舍安全排查自查报告范文
- 2024年产品保修服务协议文本
- 2024年专用液化气运输服务协议范本
- 2024年建筑效果设计方案协议模板
- 2024年二手车销售协议:全面细化
- 仓库租赁与承包协议范本2024年适用
- 出口业务协议样式2024年专业
- 《行政能力测试》课件
- 工作人员应对火灾现场应急处置卡
- 广西南宁市八年级上学期数学期末考试试卷
- 上海中考物理专题-计算题失分题专题(学生版)
- 标准化与产品标准课件
- 《研究生英语》(第二版)练习答案及译文
- 小说写作:12条小说写作技巧
- 考研复习有机化学选择题400题(页尾附答案)
- 公司规章制度立、改、废评价标准
- 针灸治疗颈椎病课件
- 灌注桩桩头破除综合施工专题方案付
评论
0/150
提交评论