全参数方程(练习带答案)_第1页
全参数方程(练习带答案)_第2页
全参数方程(练习带答案)_第3页
全参数方程(练习带答案)_第4页
全参数方程(练习带答案)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实用文档参数方程一解答题(共23小题)1已知曲线C的极坐标方程是=4cos以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角的值2在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C的极坐标方程为=4(1)若l的参数方程中的时,得到M点,求M的极坐标和曲线C直角坐标方程;(2)若点P(0,2),l和曲线C交于A,B两点,求3以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标

2、系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为,(为参数,且0,),曲线C2的极坐标方程为=2sin(1)求C1的极坐标方程与C2的直角坐标方程;(2)若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|PN|的取值范围4在直角坐标系xOy中,直线l的参数方程为为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为=6sin(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A、B,求的最小值5在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:sin2=2acos(a

3、0),过点P(2,4)的直线l的参数方程为(t为参数),l与C分别交于M,N(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值6已知曲线C的参数方程为(为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系()求曲线C的极坐标方程;()若直线l的参数方程为,其中t为参数,求直线l被曲线C截得的弦长7在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为sin2=acos(a0),过点P(2,4)的直线l的参数方程为 (t为参数),直线l与曲线C相交于A,B两点()写出曲线C的直角坐标方程和直线

4、l的普通方程;()若|PA|PB|=|AB|2,求a的值8在平面直角坐标系xOy中,曲线C的参数方程为(为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为()求C的普通方程和l的倾斜角;()设点P(0,2),l和C交于A,B两点,求|PA|+|PB|9在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为(t为参数),P点的极坐标为(2,),曲线C的极坐标方程为cos2=sin()试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点坐标;()设直线l与曲线C相交于两点A,B,点M为AB的中点,求|PM|的值10已知曲线C的极坐

5、标方程是=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数)(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C,设曲线C上任一点为M(x,y),求的最小值11在平面直角坐标系中,直线l的参数方程为(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=4cos()写出直线l和曲线C的普通方程;()已知点P为曲线C上的动点,求P到直线l的距离的最小值12已知曲线C:+=1,直线l:(t为参数)()写出曲线C的参数方程,直线l的普通方程()过曲线C上任意一点P作与l夹角为30°的直线,交l于

6、点A,求|PA|的最大值与最小值13在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系已知曲线C1: (t为参数),C2:(为参数)()化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;()若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(cos2sin)=7距离的最小值14已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是=(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标15在平面直角坐标系xOy中,已知

7、C1:(为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:(cos+sin)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值16选修44:坐标系与参数方程已知曲线C的极坐标方程是=2,以极点为原点,极轴为x轴的正半轴建立平面直角 坐标系,直线l的参数方程为(t为参数)()写出直线l与曲线C的直角坐标系下的方程;()设曲线C经过伸缩变换得到曲线C设曲线C上任一点为M(x,y),求的取值范围17在

8、直角坐标系xOy中,直线l的参数方程为,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为(1)写出直线l的普通方程及圆C 的直角坐标方程;(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小18已知直线C1:(t为参数),圆C2:(为参数)()若直线C1经过点(2,3),求直线C1的普通方程;若圆C2经过点(2,2),求圆C2的普通方程;()点P是圆C2上一个动点,若|OP|的最大值为4,求t的值19在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系曲线C1的参数方程为(为参数),曲线C2的极坐标方程为2(sin2+4cos2)=4(1)求

9、曲线C1与曲线C2的普通方程;(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值20在直角坐标系xOy中,直线l的参数方程为(t为参数)以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=2cos()把曲线C的极坐标方程化为直角坐标方程,并说明它表示什么曲线;()若P是直线l上的一点,Q是曲线C上的一点,当|PQ|取得最小值时,求P的直角坐标21已知曲线C:9x2+4y2=36,直线l:(t为参数)()写出曲线C的参数方程,直线l的普通方程;()过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值22在直角坐标

10、系xOy中,曲线C的参数方程为(为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为sin()=2()分别将曲线C的参数方程和直线l的极坐标方程转化为直角坐标系下的普通方程;()动点A在曲线C上,动点B在直线l上,定点P的坐标为(2,2),求|PB|+|AB|的最小值参数方程参考答案与试题解析一解答题(共23小题)1(2017惠州模拟)已知曲线C的极坐标方程是=4cos以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直

11、线的倾斜角的值【分析】本题(1)可以利用极坐标与直角坐标 互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1t2|,得到的三角方程,解方程得到的值,要注意角范围【解答】解:(1)cos=x,sin=y,2=x2+y2,曲线C的极坐标方程是=4cos可化为:2=4cos,x2+y2=4x,(x2)2+y2=4(2)将代入圆的方程(x2)2+y2=4得:(tcos1)2+(tsin)2=4,化简得t22tcos3=0设A、

12、B两点对应的参数分别为t1、t2,则,|AB|=|t1t2|=,|AB|=,=cos0,),或直线的倾斜角或2(2017达州模拟)在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C的极坐标方程为=4(1)若l的参数方程中的时,得到M点,求M的极坐标和曲线C直角坐标方程;(2)若点P(0,2),l和曲线C交于A,B两点,求【分析】(1)利用极坐标与直角坐标互化的方法得到结论;(2)利用参数的几何意义,求【解答】解:(1)l的参数方程中的时,M(1,1),极坐标为,曲线C的极坐标方程为=4,曲线C的直角坐标方程:x2+y2=16(5分)(2)

13、由得,(10分)3(2017湖北模拟)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为,(为参数,且0,),曲线C2的极坐标方程为=2sin(1)求C1的极坐标方程与C2的直角坐标方程;(2)若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|PN|的取值范围【分析】(1)求出C1的普通方程,即可求C1的极坐标方程,利用极坐标方程与直角坐标方程的互化方法得出C2的直角坐标方程;(2)直线l的参数方程为:(t为参数),代入C2的直角坐标方程得(x0+tcos)2+(y0+tsin+1)2=1,由直线参数方程中t的几

14、何意义可知|PM|PN|=|1+2y0|,即可求|PM|PN|的取值范围【解答】解:(1)消去参数可得x2+y2=1,因为0,),所以1x1,0y1,所以曲线C1是x2+y2=1在x轴上方的部分,所以曲线C1的极坐标方程为=1(0)(2分)曲线C2的直角坐标方程为x2+(y+1)2=1(5分)(2)设P(x0,y0),则0y01,直线l的倾斜角为,则直线l的参数方程为:(t为参数)(7分)代入C2的直角坐标方程得(x0+tcos)2+(y0+tsin+1)2=1,由直线参数方程中t的几何意义可知|PM|PN|=|1+2y0|,因为0y01,所以|PM|PN|=1,3(10分)4(2017泸州模

15、拟)在直角坐标系xOy中,直线l的参数方程为为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为=6sin(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A、B,求的最小值【分析】(1)利用极坐标与直角坐标的互化方法,求圆C的直角坐标方程;(2)利用参数的几何意义,求的最小值【解答】解:(1)圆C的方程为=6sin,可化为直角坐标方程为x2+y2=6y,即x2+(y3)2=9;(2)直线l的参数方程为为参数),代入x2+(y3)2=9,可得t2+2(cossin)t7=0,t1+t2=2(cossin),t1

16、t2=7,=,的最小值为5(2016延安校级二模)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:sin2=2acos(a0),过点P(2,4)的直线l的参数方程为(t为参数),l与C分别交于M,N(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值【分析】(1)首先,对于曲线C:根据极坐标与直角坐标变换公式,方程sin2=2acos(a0),两边同乘以,化成直角坐标方程,对于直线l:消去参数t即可得到普通方程;(2)首先,联立方程组,消去y整理,然后,设点M,N分别对应参数t1,t2,从而,得到|PM|=|t1|,

17、|PN|=|t2|,|MN|=|t1t2|,然胡,结合一元二次方程根与系数的关系,建立含有a的关系式,求解a的取值【解答】解:(1),方程sin2=2acos(a0),两边同乘以,曲线C的直角坐标方程为y2=2ax(a0);直线l的普通方程为xy2=0(2)联立方程组,消去y并整理,得t22(4+a)t+8(4+a)=0 (*)=8a(4+a)0设点M,N分别对应参数t1,t2,恰为上述方程的根则|PM|=|t1|,|PN|=|t2|,|MN|=|t1t2|由题设得(t1t2)2=|t1t2|,即(t1+t2)24t1t2=|t1t2|由(*)得t1+t2=2(4+a),t1t2=8(4+a)

18、0,则有(4+a)25(4+a)=0,得a=1,或a=4a0,a=16(2016陕西校级模拟)已知曲线C的参数方程为(为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系()求曲线C的极坐标方程;()若直线l的参数方程为,其中t为参数,求直线l被曲线C截得的弦长【分析】(1)先消去参数,求出曲线的普通方程,然后利用普通方程和极坐标方程之间的关系进行转化求解即可(2)直线方程的极坐标为,代入曲线C的极坐标方程求出即可【解答】解(1)曲线C的参数方程为(为参数),曲线C的普通方程为,将代入并化简得:,即曲线C的极坐标方程为 ;(2)将代入得弦长为7(2016开封四模)在平面直角坐标系中,

19、以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为sin2=acos(a0),过点P(2,4)的直线l的参数方程为 (t为参数),直线l与曲线C相交于A,B两点()写出曲线C的直角坐标方程和直线l的普通方程;()若|PA|PB|=|AB|2,求a的值【分析】()把曲线C的极坐标方程、直线l的参数方程化为普通方程即可;()把直线l的参数方程代入曲线C的直角坐标方程中,得关于t的一元二次方程,由根与系数的关系,求出t1、t2的关系式,结合参数的几何意义,求出a的值【解答】解:()曲线C的极坐标方程sin2=acos(a0),可化为2sin2=acos(a0),即y2=ax(

20、a0);(2分)直线l的参数方程为 (t为参数),消去参数t,化为普通方程是y=x2;(4分)()将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a0)中,得;设A、B两点对应的参数分别为t1,t2,则;(6分)|PA|PB|=|AB|2,t1t2=,=+4t1t2=5t1t2,(9分)即;解得:a=2或a=8(不合题意,应舍去);a的值为2(12分)8(2016福建模拟)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为()求C的普通方程和l的倾斜角;()设点P(0,2),l和C交于A,B两点,求|PA|+|PB|

21、【分析】解法一:()由参数方程消去参数,得椭圆的普通方程,由极坐标方程,通过两角和与差的三角函数转化求解出普通方程即可求出直线l的倾斜角()设出直线l的参数方程,代入椭圆方程并化简,设A,B两点对应的参数分别为t1,t2,利用参数的几何意义求解即可解法二:()同解法一()利用直线l的普通方程与椭圆的方程联立,设A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可【解答】解法一:()由消去参数,得,即C的普通方程为(2分)由,得sincos=2,(*)(3分)将代入(*),化简得y=x+2,(4分)所以直线l的倾斜角为 (5分)()由()知,点P(0,2)在直线l上,可设直线l的

22、参数方程为(t为参数),即(t为参数),(7分)代入并化简,得(8分)设A,B两点对应的参数分别为t1,t2,则,所以t10,t20,(9分)所以(10分)解法二:()同解法一(5分)()直线l的普通方程为y=x+2由消去y得10x2+36x+27=0,(7分)于是=3624×10×27=2160设A(x1,y1),B(x2,y2),则,所以x10,x20,(8分)故(10分)9(2016平顶山二模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为(t为参数),P点的极坐标为(2,),曲线C的极坐标方程为cos2=sin()试将曲

23、线C的极坐标方程化为直角坐标方程,并求曲线C的焦点坐标;()设直线l与曲线C相交于两点A,B,点M为AB的中点,求|PM|的值【分析】()把x=cos,y=sin代入曲线C的方程cos2=sin,可得曲线C的直角坐标方程()设点A,B,M对应的参数为t1,t2,t0 ,由题意可知把直线l的参数方程代入抛物线的直角坐标方程,利用韦达定理求得t1+t2的值,可得|PM|=|t0|的值【解答】解:()把x=cos,y=sin代入cos2=sin,可得曲线C的直角坐标方程为x2=y,它是开口向上的抛物线,焦点坐标为()点P的直角坐标为(2,0),它在直线l上,在直线l的参数方程中,设点A,B,M对应的

24、参数为t1,t2,t0 ,由题意可知把直线l的参数方程代入抛物线的直角坐标方程,得因为,所以10(2016汕头模拟)已知曲线C的极坐标方程是=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数)(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C,设曲线C上任一点为M(x,y),求的最小值【分析】(1)利用2=x2+y2,将=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x1)代入下式消去参数t即可;(2)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出最小值【解

25、答】解:(1)直线l的参数方程为为参数)由上式化简成t=2(x1)代入下式得根据2=x2+y2,进行化简得C:x2+y2=1(2分)(2)代入C得(5分)设椭圆的参数方程为参数)(7分)则(9分)则的最小值为4(10分)11(2017自贡模拟)在平面直角坐标系中,直线l的参数方程为(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=4cos()写出直线l和曲线C的普通方程;()已知点P为曲线C上的动点,求P到直线l的距离的最小值【分析】()消去参数t即可得到直线l的普通方程;利用x=cos,y=sin将曲线C转化为普通方程;()利用点到直线的距离公式

26、,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论【解答】解:()直线l:(其中t为参数),消去参数t得普通方程y=x4由=4cos得2=4cos由x=cos,y=sin以及x2+y2=2,得y2+(x2)2=4;()由y2+(x2)2=4得圆心坐标为(2,0),半径R=2,则圆心到直线的距离为:d=3,而点P在圆上,即OP+PQ=d(Q为圆心到直线l的垂足),所以点P到直线l的距离最小值为3212(2014新课标)已知曲线C:+=1,直线l:(t为参数)()写出曲线C的参数方程,直线l的普通方程()过曲线C上任意一点P作与l夹角为30°的直线,交l于

27、点A,求|PA|的最大值与最小值【分析】()联想三角函数的平方关系可取x=2cos、y=3sin得曲线C的参数方程,直接消掉参数t得直线l的普通方程;()设曲线C上任意一点P(2cos,3sin)由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值【解答】解:()对于曲线C:+=1,可令x=2cos、y=3sin,故曲线C的参数方程为,(为参数)对于直线l:,由得:t=x2,代入并整理得:2x+y6=0;()设曲线C上任意一点P(2cos,3sin)P到直线l的距离为则,其中为锐角当sin(+)=1时,|PA

28、|取得最大值,最大值为当sin(+)=1时,|PA|取得最小值,最小值为13(2016太原三模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系已知曲线C1: (t为参数),C2:(为参数)()化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;()若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(cos2sin)=7距离的最小值【分析】()曲线C1: (t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(为参数),利用cos2+sin2=1化为普通方程()当t=时,P(4,4),Q(8cos,3sin),故M,直线C3:(

29、cos2sin)=7化为x2y=7,利用点到直线的距离公式与三角函数的单调性即可得出【解答】解:()曲线C1: (t为参数),化为(x+4)2+(y3)2=1,C1为圆心是(4,3),半径是1的圆C2:(为参数),化为C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆()当t=时,P(4,4),Q(8cos,3sin),故M,直线C3:(cos2sin)=7化为x2y=7,M到C3的距离d=|5sin(+)+13|,从而当cossin=,sin=时,d取得最小值14(2016衡阳三模)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C

30、的极坐标方程是=(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标【分析】本题(1)可以先消参数,求出直线l的普通方程,再利用公式将曲线C的极坐标方程化成平面直角坐标方程,(2)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论【解答】解:(1),xy=1直线的极坐标方程为:cossin=1即,即,cos2=sin,(cos)2=sin即曲线C的普通方程为y=x2(2)设P(x0,y0),P到直线的距离:当时,此时,当P点为时,P到直线的距离最小,最小值为15(2

31、016衡水校级二模)在平面直角坐标系xOy中,已知C1:(为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:(cos+sin)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值【分析】(1)把C1消去参数化为普通方程为 x2+y2=1,再化为极坐标方程根据函数图象的伸缩变换规律可得曲线C2的普通方程,再化为极参数方程(2)先求得直线l的直角坐标方程,设点P(cos,2sin),求得点P到直线的距

32、离为d=,故当sin(+)=1时,即=2k+,kz时,点P到直线l的距离的最小值,从而求得P的坐标以及此最小值【解答】解:(1)把C1:(为参数),消去参数化为普通方程为 x2+y2=1,故曲线C1:的极坐标方程为=1再根据函数图象的伸缩变换规律可得曲线C2的普通方程为+=1,即 +=1故曲线C2的极参数方程为 (为参数)(2)直线l:(cos+sin)=4,即 x+y4=0,设点P(cos,2sin),则点P到直线的距离为d=,故当sin(+)=1时,d取得最小值,此时,=2k+,kz,点P(1,),故曲线C2上有一点P(1,)满足到直线l的距离的最小值为16(2016晋中模拟)选修44:坐

33、标系与参数方程已知曲线C的极坐标方程是=2,以极点为原点,极轴为x轴的正半轴建立平面直角 坐标系,直线l的参数方程为(t为参数)()写出直线l与曲线C的直角坐标系下的方程;()设曲线C经过伸缩变换得到曲线C设曲线C上任一点为M(x,y),求的取值范围【分析】(I)利用2=x2+y2,将=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x1)代入下式消去参数t即可;(II)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出其范围即可【解答】解:()直线l的普通方程x+y21=0曲线C的直角坐标方程x2+y2=4;(4分)(

34、)曲线C经过伸缩变换得到曲线C'的方程为,则点M参数方程为,代入x+y得,x+y=2cos+=2sin=4sin()4,4x+y的取值范围是4,4(10分)17(2016池州一模)在直角坐标系xOy中,直线l的参数方程为,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为(1)写出直线l的普通方程及圆C 的直角坐标方程;(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小【分析】(1)由已知得t=x3,从而y=,由此能求出直线l的普通方程;由,得,由此能求出圆C的直角坐标方程(2)圆C圆心坐标C(0,),设P(3+t,),由此利用两点间距离公式能求出点P的坐

35、标,使P到圆心C 的距离最小【解答】解:(1)在直角坐标系xOy中,直线l的参数方程为,t=x3,y=,整理得直线l的普通方程为=0,圆C的直角坐标方程为:(2)圆C:的圆心坐标C(0,)点P在直线l:=0上,设P(3+t,),则|PC|=,t=0时,|PC|最小,此时P(3,0)18(2016龙岩二模)已知直线C1:(t为参数),圆C2:(为参数)()若直线C1经过点(2,3),求直线C1的普通方程;若圆C2经过点(2,2),求圆C2的普通方程;()点P是圆C2上一个动点,若|OP|的最大值为4,求t的值【分析】(I)直线C1:(t为参数),消去参数t化为普通方程:y=(x1)tan+2,把

36、点(2,3)代入,解得tan,即可得出直线C1的普通方程由圆C2:(为参数),利用cos2+sin2=1消去参数化为普通方程,把点(2,2)代入解得t2,即可得出圆C2的普通方程(II)由题意可得:|OP|max=|OC2|+|t|,代入解得t即可得出【解答】解:(I)直线C1:(t为参数),消去参数t化为普通方程:y=(x1)tan+2,直线C1经过点(2,3),3=tan+2,解得tan=1直线C1的普通方程为y=x+1圆C2:(为参数),化为普通方程:(x1)2+(y2)2=t2,圆C2经过点(2,2),t2=1,圆C2的普通方程为:(x1)2+(y2)2=1圆心C2=(1,2),半径r

37、=1(II)由题意可得:|OP|max=|OC2|+|t|,4=+|t|,解得t=±(4)19(2016河南三模)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系曲线C1的参数方程为(为参数),曲线C2的极坐标方程为2(sin2+4cos2)=4(1)求曲线C1与曲线C2的普通方程;(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值【分析】(1)曲线C1的参数方程为(为参数),利用cos2+sin2=1可得普通方程曲线C2的极坐标方程为2(sin2+4cos2)=4,利用y=sin,x=cos即可化为直角坐标方程(2)设B(cos,2sin),则|BC1|=,利用三角函数的单调性与值域、二次函数的单调性即可得出【解答】解:(1)曲线C1的参数方程为(为参数),利用cos2+sin2=1可得:x2+(y1)2=圆心C(0,1)曲线C2的极坐标方程为2(sin2+4cos2)=4,可得直角标准方程:y2+4x2=4,即+y2=4(2)设B(cos,2sin),则|BC1|=,当sin时取等号|AB|的最小值=20(2016武昌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论