版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.专业.专注.数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)一.选择题(共9小题)1 .已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20-2x,那么自变量x的取值范围是()A.x>0B.0<x<10C.0<x<5D.5Vx<102 .如图,三个正比例函数的图象对应的解析式为y=ax,y=bx,丫飞乂,则a、b、c的大小关系是()A.a>b>cB.c>b>aC.b>a>cD.b>c>a3 .函数厂应的自变量x的取值范围是()x-3A.x<2B.x
2、冷且xw3C.x>2D.x<2且x#34 .关于函数y=-x-2的图象,有如下说法:图象过点(0,-2)图象与x轴的交点是(-2,0)由图象可知y随x的增大而增大图象不经过第一象限图象是与y=-x+2平行的直线,其中正确说法有()A. 5个B.4个C.3个D.2个5 .一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间6 .下列语句不正确的是()A.所有的正比例函数肯定是一次函数B. 一次函数的一般形式是y=kx+bC,正比
3、例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7 .已知x关于的一次函数y=mx+n的图象如上图,则|n-m|-之可化简()D . 2n m8 .如果一次函数y=kx+b,当-30x01时,-1<y<7,则kb的值为()A.10B.21C.-10或2D.-2或109 .若函数y=(2m+1)x2+(1-2m)x+1(m为常数)是一次函数,则m的值为()A.m>工B.m=C,mD.m=-工2222二.填空题(共9小题)10 .直线y=kx向下平移2个单位长度后恰好经过点(-4,10),则卜=.11 .已知直线y=kx+b经过第一、二、四象限,那么直线y=-
4、bx+k经过第象限.12 .已知点A(-4,a)、B(-2,b)都在直线y=-x+k(k为常数)上,则a与b的大小关系是ab.(填“>”域”“二”)13 .已知正比例函数y=(1-m)x|m2|,且y随x的增大而减小,则m的值是.14 .如图,点A的坐标为(-1,0),点B(a,a),当线段AB最短时,点B的坐标为15 .已知一次函数y=(-3a+1)x+a的图象上两点A(xi,yi),B(X2,y2),当xi>X2时,yi>y2,且图象不经过第四象限,则a的取值范围是.16 .如图1,在等腰RtzXABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰
5、RtACDE.动点P从点A出发,以1个单位/s的速度,沿着折线A-D-E运动.在运动过程中,4BCP的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是word可编辑17 .如图,放置的OAB1,B1A1B2,AB2A2B3,都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,都在同一条直线上,则点A2015的坐18 .如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2),点A在第二象限.直线y=-Lx+5与x轴、y轴分别交于点N、M.将菱2形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=19 .已知:函数y=(m+1)x+2m6(1)若函数
6、图象过(-1,2),求此函数的解析式(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=-3x+1的交点.20 .如图,直线ll的函数关系式为,且11与x轴交于点D,直线12经过定点A(4,0),B(-1,5),直线11与12相交于点C,(1)求直线12的解析式;(2)求4ADC的面积;(3)在直线12上存在一点F(不与C重合),使得4ADF和4ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得4BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21 .已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(-2,0
7、)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且4ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且Szqab=Sapab.用含a的代数式表示b;若QA=QB,求点Q的坐标.口工22 .某仓库甲、乙、内三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和内车每小时各运输多少吨?(3)由于仓库接到
8、临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,23 .如图,直线li的解析表达式为:y=3x-3,且li与x轴交于点D,直线12经过点A,B,直线li,12交于点C.(1)求4ADC的面积;(2)在直线12上存在异于点C的另一点P,使得4ADP与4ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24 .如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A
9、、B、C的坐标分别是A(-5,1),B(-2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.点C为AB的中点,AB=12V225 .已知点A、B分别在x轴,y轴上,OA=OB,(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且/ECF=45。求证:EF=OE2+AF2;若点E的坐标为(3, 0),求CF的长.0图2426 .
10、如图1,点A的坐标是(-2,0),直线y=-与x+4和x轴、y轴的交点分1-1别为B、C点.(1)判断4ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,MON的面积为S.求S与t的函数关系式;并求当t等于多少时,S的值等于包?27 .如图,一次函数y=-j-x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.(1)点P在运动的过程中,若某一时刻,4OPA的
11、面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q点坐标;(3)在整个运动过程中,当t为何值时, AOP为等腰三角形?28 .如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为,点C的坐标为.(2)若正方形以每秒掂个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.29 .有一根直尺,短边的长为2cm,长边的长为10
12、cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图.设平移的长度为xcm,且满足0&XW10,直尺与直角三角形纸板重合部分的面积(即图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.(图)r 一【F(图)0),且(n 3)BO匀速运动,设30 .如图,在平面直角坐标系中,O为坐标原点.4ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n
13、,0),B(-5,2+“3m-12=0,点P从B出发,以每秒2个单位的速度沿射线点P运动时间为t秒.(1)求A、C两点的坐标;(3)当P在线段BO上运动时,是否存在一点P,使APAC请说明理由.(2)连接PA,用含t的代数式表示4POA的面积;是等腰三角形?若31 .如图,在平面直角坐标系中,4ABC为等腰三角形,AB=AC,将4AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为产得工+6,(1) AO=;AD=;OC=(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且/PAQ=ZBAC,设P运动时间为t秒,求4POQ的面积S与t之间
14、的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32 .已知在平面直角坐标系中B (o、b)满足 +|a -361=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DELAB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若/OPD=450求点D的坐标.*33 .如图,?ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的元二次方程x2-7x+12=0的两个根,且OA>OB.(1)求AB
15、的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B-A方向运动,过P作x轴的垂线交x轴于点E,若SzPBE=,求此时点P的坐标.334 .在平面直角坐标系xoy中,对于任意两点Pi(xi,yi)与P2(X2,y2)的洋常距离”,给出如下定义:若|xi-x2|斗yi-y2|,则点Pi与点P2的非常距离”为|xi-x2|;若|xi-x2|<|yi-y2|,则点Pi与点P2的洋常距离”为|yi-y2.例如:点Pi(i,2),点P2(3,5),因为|i-3|<|2-5,所以点Pi与点P2的洋常距离”为|2-5|=3,也就是图i中线段PiQ与线段
16、P2Q长度的较大值(点若点A与点B的芈常距离”为2,写出一个满足条件的点B的坐标;直接写出点A与点B的非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,4如图2,点D的坐标是(0,1),求点C与点D的洋常距离”的最小值及相应的点C的坐标;如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的洋常距离”的最小值及相应的点E和点C的坐标.35 .对于两个已知图形Gi、G2,在Gi上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形Gi、G2的密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形Gi、G2的疏请你在学习、理解上述定义的
17、基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(-3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的密距”是,疏距”是一;(2)设直线y(x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的密距”是1,求它们的疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点。旋转一周,在旋转过程中,它与四边形KLMN的疏距”的最大值为7,旋转过程中,它与四边形KLMN的密距”的取值范围是一;求四边形KLMN的面积的最大值.36 .在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线
18、段OA上,AC=3,过点A作AEXBC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,4POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使4PBQ为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37 .如图,四边形OABC中,CB/OA,/OCB=90B=1,OA=OC,。为坐标原点,点A在x轴上,点C在y轴上,直线尸卷犬+1过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)
19、求证:AD=BO且ADLBO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38 .如图,一次函数y=-昱x+2卷的图象与坐标轴分别交于点A和B两点,3WAAOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.人39 .已知,如图,在平面直角坐标系中
20、,点A、B的横坐标恰好是方程x2-4=0的解,点C的纵坐标恰好是方程x2-4x+4=0的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?PQA=603)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且/,问:当Q在第一象限内运动时,/APQ+BQ的度数和是否会发生改变?若不变,请说明理由并求其他40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函
21、数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5h与乙相遇,请你帮助方成同学解决以下问题Mmir加 r 二-llr叉 T1-4-lIT十船JLlrT :J r ILIrLmrkL r UI-二r r u LI r r LI1 i 一二二 i 二二* 一(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)参考答案与试题解析一.选择题(共9小题)1.(
22、2016春?农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20-2x,那么自变量x的取值范围是()A.x>0B.0<x<10C.0<x<5D.5Vx<10於析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.解答】解:根据三角形的三边关系,得WJ0<20-2x<2x,由202x>0,解得x<10,由202x<2x,解得x>5,贝U5Vx<10.故选D.陵评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是
23、解题的关键.2. (2012秋?镇赛县校级月考)如图,三个正比例函数的图象对应的解析式为y=ax,丫也乂,丫飞乂,则a、b、c的大小关系是(A.a>b>cB.c>b>aC.b>a>cD.b>c>a於析】根据所在象限判断出a、b、c的符号,再根据直线越陡,则凶越大可得答案.解答】解:=ax,y=bx,y=cx的图象都在第一三象限,.a>0,b>0,c>0,.宜线越陡,则凶越大,.c>b>a,故选:B.滕评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0时,图象经过一、三象限,y随x的增大而增大;当k&l
24、t;0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越陡,则|k|越大.3. (2016春?®庆校级月考)函数尸乂"的自变量x的取值范围是()x-3A.x<2B.x冷且xw3C.x>2D.x<2且x#3於析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答】解:根据题意得:2-xR且x-3总,解得:xU且x3,.专业.专注.自变量的取值范围x<2,故选A.陵评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是
25、分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4. (2016春?南京校级月考)关于函数y=-x-2的图象,有如下说法:图象过点(0,-2)图象与x轴的交点是(-2,0)由图象可知y随x的增大而增大图象不经过第一象限图象是与y=-x+2平行的直线,其中正确说法有()A.5个B.4个C.3个D.2个於析】根据一次函数的性质和图象上点的坐标特征解答.解答】解:将(0,-2)代入解析式得,左边=-2,右边=-2,故图象过(0,-2)点,正确;当y=0时,y=-x-2中,x=-2,故图象过(-2,0),正确;因为k=-1<0,所以y随x增大而减小,错误;因为k=-
26、1<0,b=-2<0,所以图象过二、三、四象限,正确;因为y=-x-2与y=-x的k值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5. (2016春?®庆校级月考)一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与C於析】分三段讨论,两车从开始到相遇,这段时间两车距迅速减小,相遇后向相
27、反方向行驶到特快到达甲地,这段时间两车距迅速增加,特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.解答】解:两车从开始到相遇,这段时间两车距迅速减小;相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.陵评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6. (2015春?W水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC,正比例函数和一次函数的图象都是直
28、线D.正比例函数的图象是一条过原点的直线於析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k刈),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.滕评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7. (2016春?无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n-m|-工可化简()A.nB.n-2mC.mD.2n-m於析】根据一次函数图象与系
29、数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.解答】解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,.m<0,n>0;|n-ml-7+礼-!)2=n-m-(m)+(nm)=2nm.故选D.滕评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k0,b0)的图象,当k<0,b>0时,经过第一、二、四象限.8. (2015秋?盐城校级月考)如果一次函数y=kx+b,当-3401时,-1<y07,则kb的值为()A.10B.21C.-10或2D.-2或10於析】由一次函
30、数的性质,分k>0和k<0时两种情况讨论求解.解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得3k+b=-lIk+b=7解得k二2.即世二10;Lb=5当k<0时,y随x的增大而减小,所以得-3k+b二7,Lk+b=-l解得件-2.即32.所以kb的值为-2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.9. (2015秋?西安校级月考)若函数y=(2m+1)x2+(1-2m)x+1(m为常数)是一次函数,则m的值为()A.m>B.m=C.m<D.m=2222於析】根据一次函数的定义列出算式计算即可
31、.解答】解:由题意得,2m+1=0,解得,m=-之,故选:D.陵评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10. (2014春?平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(4,10),则k=-3.於析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx-2,然后把(-4,10)代入y=kx-2即可求出k的值.解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx-2,.经过点(-4,10),.10=-4k-2,解得:k=-3,故答案为:-3.滕评】此题主要考查了一次函数
32、图象与几何变换,平移后解析式有这样一个规律左加右减,上加下减”.11. (2016春?南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第二、三、四象限.於析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求-b的符号,由-b,k的符号来求直线y=-bx+k所经过的象限.解答】解:.直线y=kx+b经过第一、二、四象限,.*<0,b>0,b<0,直线y=-bx+k经过第二、三、四象限.故答案是:二、三、四.滕评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符
33、号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12. (2016春伙丰市校级月考)已知点A(-4,a)、B(-2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a<b.(填域2“二”)於析】先根据一次函数的解析式判断出一次函数的增减性,再根据-4<-2即可得出结论.解答】解:.一次函数y=x+k(k为常数)中,k=>0,22-y随x的增大而增大,-4<-2,.a<b.故答案为:<.陵评】本题考查的是一次函
34、数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13. (2015春?建瓯市校级月考)已知正比例函数y=(1-m)x|m2|,且y随x的增大而减小,则m的值是3.於析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.解答】解::此函数是正比例函数,.fIm-2|二1h-mCO,解得m=3,故答案为:3.陵评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14. (2016春以津校级月考)如图,点A的坐标为(-1,0),点B(a,a),当线段A
35、B最短时,点B的坐标为(-1-1)22于点D,过点D作OEx轴于点E,先根据垂线段最word可编辑短得出当点B与点D重合时线段AB最短,再根据宜线OB的解析式为y=x得出AOD是等腰直角三角形,aOE=-OA=-,由此可得出结论.22解答】解:过点A作ADLOB于点D,过点D作OEx轴于点E,垂线段最短,当点B与点D重合时线段AB最短.宜线OB的解析式为y=x,;9OD是等腰直角三角形,.OE=yOA=1,陵评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15. (2015春?t兴市校级月考)已知一次函数y=(-3a+1)x+a的
36、图象上两点A(xi,yi),B(X2,y2),当x1>x2时,yi>y2,且图象不经过第四象限,则a的取值范围是0WV工.3於析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.解答】解:,xi>x2时,yi>y2,3a+i>0,解得a<-,.图象不经过第四象限,.,经过一三或一二三象限,a2*0,Ov故答案为:09上.3滕评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象限是解决本题的关键.16. (2015秋?f江市校级月考)如图1,在等腰RtABC中,D为斜边AC边上
37、一点,以CD为直角边,点C为直角顶点,向外构造等腰RtACDE.动点P从点A出发,以1个单位/s的速度,沿着折线A-D-E运动.在运动过程中,BCP的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是2+正於析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,当点P在DE上时,三角形的面积不变,故此DE=4,从而可求得DC=2灰,于是得到AC=2+2V2,从而可求得BC的长为2+&.解答】解:由函数图象可知:AD=1X2=2,DE=1X(6-2)=4.DEC是等腰直角三角形,.DC=除xDE=4xq=2&.&W.AC=2+2近.9BC是等腰直角三
38、角形,.BC=*XAC=X(2+2V2)=V2+2.-U匕故答案为:2+我.滕评】本题主要考查的是动点问题的函数图象,由函数图象判断出AD、DE的长度是解题的关键.17. (2016春?盐城校级月考)如图,放置的AOABi,B1A1B2,B2A2B3,都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,都在同一条直线上,则点A2015的坐标是(型*a,名空退a)於析】根据题意得出直线2一2-BB1的解析式为:y=Ex,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(a,0),AO/A1B1,/B1O
39、C=60°,.OC=-a,CB1=OB1Sin60正a,22 B1的坐标为:(.点B1,B2,B3,都在直线y=J5x上,&(*,Fa,A1(ya,亨a),.A2(2a,%),An(J?±-a,皂).22A2015(H_a,-15Ma)22滕评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键18. (2016春傣兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(T,0)、B(0,2),点A在第二象限.直线y=-lx+5与x轴、yj轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在於析】根据菱形
40、的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.点 B (0, 2),解答】解:二.菱形ABCD的顶点C(-1,0),.点A的坐标为(-1,4),当y=4时,-Xx+5=4,2解得x=2,.点A向右移动2+1=3时,点A在MN上,.m的值为3,故答案为3.滕评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征菱形的性质,比较简单.三.解答题(共22小题)19. (2016春砒城县校级月考)已知:函数y=(m+1)x+2m-6(1)若函数图象过(-1,2),求此函数的解析式.(2)若函数图象与直线y
41、=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=-3x+1的交点.附析】(1)根据一次函数图象上点的坐标特征,把(-1,2)代入y=(m+1)x+2m-6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.解答解:(1)把(1,2)代入y=(m+1)x+2m6得-(m+1)+2m-6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m-6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x-
42、4.(3)解了23得卜二1,.两直线的交点为(1,-2).陵评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20. (2015秋?兴化市校级月考)如图,直线11的函数关系式为y=yS+l,且ll与x轴交于点D,直线12经过定点A(4,0),B(-1,5),直线11与12相交于点C,(1)求直线12的解析式;(2)求4ADC的面积;(3)在直线12上存在一点F(不与C重合),使得4ADF和4ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得
43、4BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.附析(1)利用待定系数法即可直接求得12的函数解析式;(2)首先解两条之间的解析式组成的方程组求得C的坐标,然后利用三角形的面积公式即可求解;(3) AADF和4ADC的面积相等,则F的纵坐标与C的总坐标一定互为相反数,代入12的解析式即可求解;(4)求得C关于x轴的对称点,然后求得经过这个点和B点的直线解析式,直线与x轴的交点就是E.解答解:(1)设12的解析式是y=kx+b,(1根据题意得:(曲+b=U,解得:,k=l-+b=5I则函数的解析式是:y=-x+4;(2)在尸J-hi中令y=0,解得:x=-2,则D的坐标是(-2
44、,0).2解方程组,1,些万、+1解得:产,ly=2则C的坐标是(2,2).E_1_贝USaadc=X6X2=6;2(3)把y=2代入y=x+4,得一2=x+4,解得:x=6,则F的坐标是(6,-2);(4) C(2,2)关于x轴的对称点是(2,-2),则设经过(2,-2)和B的函数解析式是y=mx+n,口"2m+n=-2则,,-irH-n=5f7解得:,g,则直线的解析式是y=-lx+1.33令y=0,贝ij-工x+且=0,解得:x二旦.337则E的坐标是(旦,0).7陵评】本题考查了待定系数法求一次函数的解析式,以及对称的性质,正确确定E的位置是本题的关键.21. (2016春?
45、盐城校级月考)已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(-2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且4ABP是等腰直角三角形(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且Szqab=Sapab.用含a的代数式表示b;若QA=QB,求点Q的坐标.附析(1)把A(-2,0),B(0,4)代入y=kx+b,根据待定系数法即可求得;(2)作PCly轴于C,证得ABOzXBPC,从而得出AO=BC=2,BO=PC=4,根据图象即可求得点P的坐标;(3)由题意可知Q点在经过Pi点且垂直于直线l的直线上,得到点Q所在的直线平
46、行于直线AB,设点Q所在的直线为y=2x+n,代入Pi(-4,6),求得n的值,即可求得点Q所在的直线为y=2x+14,代入Q(a,b)即可得到b=2a+14;由QA=QB,根据勾股定理得出(a+2)2+b2=a2+(b-4)2,进一步得到(a+2)2+(2a+14)2=a2+(2a+14-4)2,解方程即可求得a的值,从而求得Q点的坐标.解答解:(1)把A(2,0),B(0,4)代入y=kx+b中得:(一比+七二。,b二4则直线AB解析式为y=2x+4;(2)如图1所示:#PCXy轴于C,.宜线l经过点B,并且与直线AB垂直.zABO+/PBC=900,vzABO+/BAO=900,zBAO
47、=ZPBC,二.9BP是等腰直角三角形,.AB=PB,在AABO和4BPC中,rZBAO=ZPBC,ZACB=ZBCPlAB-PBAABOABPC(AAS),.AO=BC=2,BO=PC=4,.点P的坐标(4,6)或(4,2);(3)二点Q(a,b)在第二象限,且$qab=Sapab.Q点在经过Pi点且垂直于直线l的直线上,.点Q所在的直线平行于直线AB,宜线AB解析式为y=2x+4,设点Q所在的直线为y=2x+n,-Pi(-4,6),-6=2X(-4)+n,解得n=14,.点Q所在的直线为y=2x+14,.点Q(a,b),.b=2a+14;A(-2,0),B(0,4)®/QA=QB
48、,(a+2)2+b2=a2+(b-4)2,.b=2a+14,(a+2)2+(2a+14)2=a2+(2a+14-4)2,整理得,10a=-50,解得a=-5,b=4,.Q的坐标(-5,4).滕评】本题是一次函数的综合题,考查了待定系数法求一次函数的解析式腰三角形的性质,三角形全等的判定和性质,两直线平行的性质等.22.(2016春?扬州月考)某仓库甲、乙、内三辆运货车,每辆车只负责进货或出货,每小时的运输量内车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙
49、、丙三辆车中,谁是进货车?(2)甲车和内车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,附析(1)由BC段库存减少结合此时只有甲、乙工作且乙车运货量最少,可知甲车为出货车;由B、C点坐标结合乙车的运输量为每小时6吨,可得知乙车为进货车;由OA段库存增加,且OA段只有甲、内车工作,可知丙车为进货(2)设甲车每小时运货x吨,丙车每小时运货y吨,结合图形中各点的坐标可列出关于x、y的二元一次方程组,解方程组即可得出结论;(3)设8小时后,甲、乙两车又工作了t小时,库存量是6吨,由库存二原
50、库存+进货量-出货量,可列出关于t的一元一次方程,解方程即可得出结论.解答解:(1)二.每小时的运输量内车最多,乙车最少,BC段只有甲、乙工作,且库存在减少,甲车是出货车,又,。人段只有甲、丙车工作,库存在增加,,丙车是进货车,结合B、C点的坐标,且乙车的运输量为每小时6吨,可知乙车为进货车.故乙、丙车是进货车,甲车是出货车.(2)设甲车每小时运货x吨,内车每小时运货y吨,12(y-x)=4L(6+y)+(8-3)(6-x)=10-<x=8y=10故甲车每小时运输8吨货物,内车每小时运输10吨货物.(3)设8小时后,甲、乙两车又工作了t小时,库存量是6吨,贝U有(8+6)t+10+10=
51、6,解得:t=7答:8小时后,甲、乙两车又工作了7小时,库存量是6吨.陵评】本题考查了一次函数的性质、二元一次方程组的应用以及一元一次方程的应用,解题的关键:(1)结合图形得出结论;(2)根据图形中的点的坐标列出关于x、y的二元一次方程组;(3)根据数量关系列出关于t的一元一次方程.本题属于中档题,难度不大,解决该题型题目时利用数形结合列出方程(或方程组),解方程(或方程组)即可得出结论.23.(2013秋?镇江月考)如图,直线li的解析表达式为:y=3x-3,且l1与x轴交于点D,直线12经过点A,B,直线li,12交于点C.(1)求AADC的面积;(2)在直线12上存在异于点C的另一点P,
52、使得4ADP与4ADC的面积相等,则点P的坐标为(6,-3);(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐附析(1)令y=0求出点D的坐标,求出AD的长,设直线12的解析式为y=kx+b(kM),然后利用待定系数法求出直线的解析式,再联立两直线解析式求出点C的坐标,然后利用三角形的面积公式列式计算即可得解;(2)根据等底等高的三角形的面积相等求出点P的纵坐标,然后代入直线12的解析式计算即可得解;(3)根据平行四边形的对边平行且相等,分AC、CD是平行四边形的对角线时写出点H的坐标,AD是对角线时,根
53、据平行四边形的对角线互相平分,先求出AD的中点坐标,再根据中点公式列式计算即可得解.解答解:(1)令y=0,贝U3x3=0,解得x=1,.点D(1,0),.AD=4-1=3,设直线12的解析式为y=kx+b(k0),1r3则.3k+吨L4k+b=0fk=解得,2,Lb=6.,设直线12的解析式为y=-yX+6,3联立产2K机解得可,l尸3.点C的坐标为(2,3),AADC的面积=X3X3=M;22(2) ADP与AADC的面积相等,点P是异于点C的点,.点P的纵坐标为-3,.x+6=3,2解得x=6,.点P(6,-3);故答案为:(6,-3);(3)AC是平行四边形的对角线时,CH=AD=3,
54、点H的横坐标为2+3=5,所以,点H的坐标为(5,3),CD是平行四边形的对角线时,CH=AD=3,点H的横坐标是2-3=-1,所以,点H的坐标为(-1,3),AD是对角线时,yAD=1,所以,AD的中点坐标为(|,0),.平行四边形的对角线互相平分,设点H(x,y),则半=率军=0,心乙乙解得x=3,y=-3,.点H的坐标为(3,-3),综上所述,存在点H(5,3)或(T,3)或(3,-3),使以A、D、C、H为顶点的四边形是平行四边形.滕评】本题是二次函数综合题型,主要利用了待定系数法求一次函数解析式,联立两直线解析式求交点坐标,等底等高的三角形的面积相等,以及平行四边形的性质,难点在于(
55、3)根据平行四边形的性质分情况讨论.24.(2014春?岳麓区校级月考)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(-5,1),B(2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四附析(1)根据点B、C的坐标求出BC的长度,再根据平行四边形的对边相等列式求出点D的横坐标,然后写出D点坐标即可;(2)设直线BD的解析式为y=kx+b,然后利用待定系数法求一次函数解析式解答;过点B作BE,AD于E,求出BE、DE的长,然后利用勾股定理列式计算即可得解;(3)根据向右平移横坐标加,向下平移纵坐标减求出A1、B1、C1、D1的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《笔译实践》2023-2024学年第一学期期末试卷
- 合同 假期规定
- 2024年高考地理一轮复习课时练3宇宙中的地球太阳对地球的影响和地球的圈层结构含解析中图版
- 2024工程施工合同管理的意义及工作要点
- 行星科学(天文学教程)
- 2024视讯服务系统合作经营合同模板
- 2024房地产开发全总包合同范例
- 2024车辆买卖合同样本
- 2024行车采购合同范本
- 深圳大学《运动技能学习与控制》2022-2023学年期末试卷
- 工厂安全培训考试题(完美)
- Office高效办公智慧树知到期末考试答案章节答案2024年西安欧亚学院
- 《建筑外墙外保温系统修缮标准 JGJ376-2015》
- 2024-2025学年牛津版小学六年级英语上册期中检查试题及答案
- 水利水电工程单元工程施工质量验收评定表及填表说明
- 2024年浙江地方金融监督管理局事业单位笔试真题
- SAP项目实施服务合同(2024版)
- 集体荣誉感主题教育班会
- HG-T 2006-2022 热固性和热塑性粉末涂料
- 金融调解中心可行性报告
- 医学检验技术生涯规划报告
评论
0/150
提交评论