光催化分解水综述_第1页
光催化分解水综述_第2页
光催化分解水综述_第3页
光催化分解水综述_第4页
光催化分解水综述_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、光催化分解水 氢是一种热值很高的清洁能源,其完全燃烧的产物水不会给环境带来任何污染,而且放热量是相同质量汽油的2. 7 倍。因而开发低能耗高效的氢气生产方法,已成为国内外众多科学家共同关注的问题 自从日本的Fujishima 等于1972 年首次发现在近紫外光(380nm) 的作用下,金红石型TiO2 单晶电极能使水在常温下分解为H2 和O2 以来,从光能量转换的观点出发,光催化分解水制取氢气领域出现了大量的研究 前言 从太阳能利用角度看,光解水制氢主要是利用太阳能中阳光辐射的紫外和可见部分。目前,光解水制氢主要通过以下三个途径实现 光化学电池(PEC) 光助络合催化 半导体光催化 水的太阳能

2、光解光解水 光化学电池是通过光阳极吸收太阳能并将光能转化为电能。光阳极通常为光半导体材料,受光激发可以产生电子-空穴对。光阳极和对极组成光电化学池,在电解质存在下光阳极吸光后在半导体导带上产生的电子通过外电路流向对极,水中的质子从对极上接受电子产生氢气光化学电池(PEC) 光助络合催化是人工模拟光合作用分解水的过程。从原理上模拟光合作用的吸光、电荷转移、储能和氧化还原反应等基本物理化学过程 该反应体系比较复杂,除了电荷转移光敏络合物以外,还必须添加催化剂和电子给体等其他消耗性物质。此外,大多数金属络合物不溶于水只能溶于有机溶剂,有时还要求有表面活性剂或相转移催化剂存在以提高接触效率光助络合催化

3、优点缺点半导体光催化分解水制氢的反应体系大大简化光激发在同一个半导体微粒上产生的电子-空穴对极易复合不但降低了光电转换效率,同时也影响光解水同时放氢放氧 将光半导体(如TiO2,CdS)微粒直接悬浮在水中进行光解水反应。半导体光催化在原理上类似于光化学电池,细小的光半导体微粒可以被看作一个个微电极悬浮在水中,像光阳极一样起作用,所不同的是它们之间没有像光电化学池那样被隔开半导体光催化半导体光催化剂吸收光子,形成电子-空穴对电荷分离并转移到表面的反应活性点上在表面进行化学反应,从而析出氢气和氧气半导体光解水制氢的反应历程 以TiO2(负载Pt和RuO2)为例。TiO2为n型半导体,其价带(VB)

4、和导带(CB)之间的禁带宽度为3.0eV左右。当它受到其能量相当或高于该禁带宽度的光辐照时,半导体内的电子受激发从价带跃迁到导带,从而在导带和价带分别产生自由电子和空穴。水在这种电子-空穴对的作用下发生电离,生成H2和O2。 表面所负载的Pt和RuO2分别能加速自由电子向外部的迁移,促进氢气的产生和加速空穴的迁移有利于氧气的生成半导体光解水制氢的原理TiO2光解水的反应机理 理论上,半导体禁带宽度大于1.23eV就能进行光解水,但如果把能量损失考虑进去,最合适的禁带宽度为2.02.2eV禁带宽度要大于水的电解电压(理论值1.23eV)价带和导带的位置要分别同O2/H20和H2/H2O的电极电位

5、相适宜光解水对半导体材料的要求电化学对半导体的要求:半导体价带的位置应比O2/H20的电位更正(即在它的下部), 导带的位置应比H2/H2O更负(即在它的上部)半导体能带结构同水分解电位的对应关系氢和氧的逆反应结合已进入气相的氢和氧,在催化剂表面上再吸附并反应半导体负载的Pt等金属上产生的氢原子,通过“溢流”作用和表面的氧原子反应在半导体表面已形成的分子氢和氧,以气泡形式留在催化剂上,当它们脱离时,气泡相互结合产生逆反应光生电子-空穴的再结合 光生电子-空穴对容易发生再结合,这对分解水是十分不利的光催化反应效率的影响因素电子-空穴再结合的抑制 抑制电子-空穴再结合的途径主要通过光催化剂的改性来

6、实现。主要方法有贵金属沉积;复合半导体;离子掺杂;表面光敏化;表面还原处理;超强酸化;表面螯合及衍生作用等提高光催化反应效率的途径添加高浓度碳酸根离子其他途径加入电子给体或受体氢和氧结合逆反应的抑制 通过除去反应生成的气相产物、在反顶部照射、设计层状结构催化剂(使氢和氧在不同位置的反应点产生)等方法阻止逆反应的发生 光催化分解水可以分为水的还原和水的氧化两个反应。通过向体系中加入电子给体不可逆的消耗反应产生的空穴,以提高放氢反应的效率;通过加入电子受体不可逆的结合产生的电子,以促进放氧反应的效率 对于典型的Pt-TiO2催化剂,高浓度的碳酸根离子可以抑制在Pt上发生的逆反应,同时通过形成过碳酸

7、根也促进了氧的释放 目前广泛使用的半导体催化剂主要是过渡金属氧化物和硫化物。其中对TiO2光催化剂研究得最多。CdS也是研究得较多的催化剂,其禁带宽度只有2.4 eV,可利用太阳能,且具有很好的放氢活性,但由于易发生光腐蚀而受到限制 介绍一些新近研究的催化剂,如钽酸盐光催化剂,层状结构化合物催化剂及其他一些特殊结构的催化剂 新型光解水催化剂钽酸盐光催化剂 日本东京理工大学H.Kato和A.Kudo研究组研究了一系列的钽酸盐的光催化活性。研究发现与钛酸盐催化剂不同,钽酸盐催化剂即使在没有负载复合光催化剂(如Pt)的情况下,其光催化性能也比TiO2 的光解水效率高的多LiTaO3 4.7 6 2N

8、aTaO3 4.0 4 1KTaO3 3.6 29 13 Catalyst Band gap/eVActivity/mol h-1H2 O2碱金属钽酸盐光催化分解水活性 从上表可以看出,在没有负载共催化剂的情况下。催化活性为LiTaO3 NaTaO3 KTaO3。这些钽酸盐光解水材料是由TaO6 八面体构成( TaO6八面体共同分享1个角) 研究发现:Ta-O-Ta的键角越接近180,激发能越容易分散,电子-空穴越容易分离,禁带也变得越来越小。在LiTaO3 、NaTaO3 、KTaO3 中, Ta-O-Ta 的键角分别为143、163、180,因此激发能的分散能力为: LiTaO3 NaTa

9、O3 四方晶系 六方晶系的光解水材料 研究还发现,在水中加入少量的Ba(OH)2 ,其活性更加显著,可能是由于Ba2+的加入,减少了光催化剂的溶解程度,降低了其晶体缺陷,提高了光催化剂的活性碱土金属钽酸盐MgTa2O6 4.4 5 1BaTa2O6(Hexa) 4.0 7 2BaTa2O6(Tetra) 3.8 21 10BaTa2O6(Ortho) 4.1 33 15 BaTa2O6(Ortho) * 4.1 126 59 Catalyst Band gap/eVActivity/mol h-1H2 O2*水中加入少量的Ba(OH)2 碱土金属钽酸盐光催化分解水活性CrTaO4 2.7 2

10、0MnTa2O6 3.3 0.2 0FeTaO4 1.7 0.5 0CoTa2O6 3.2 2 0 NiTa2O6 3.7 11 4CuTa2O6 2.4 0.09 0.04ZnTa2O6 4.4 7 0ZnTa2O6* 4.4 15 6 Catalyst Band gap/eVActivity/mol h-1H2 O2* 负载0.1wt%NiO 可以看出,在没有共催化剂的条件下,只有NiTa2O7可以分解纯水为氢和氧;在负载NiO后,ZnTa2O7也具有了光催化分解水活性。而其他过渡金属钽酸盐均不能产生氧气(CuTa2O7尽管可以分解水产生氧气和氢气,但产生的量太少) 由于Cr, Mn, F

11、e, Co, and Cu等金属离子均存在变价,因此它们都容易成为光生电子-空穴的再结合中心,从而降低了催化活性 而Ni由于其半满的3d轨道构型使之能形成稳定2价离子,不易成为再复合中心,加之其大的禁带宽度,使其成为唯一具有催化活性的过渡金属钽酸盐 ZnTa2O7的禁带宽度也很大,同时Zn离子也比较稳定,但在无NiO共催化的条件也不具有催化活性。其中的原因可能在于其表面产生氢的活性点活性较低过渡金属钽酸盐低催化活性的原因 由于钽酸盐的特殊结构,以及高的导带,因此使得此种材料光催化分解水具有一定的优势。然而它们的禁带宽度很大,大大降低了太阳能的利用率。因此需通过掺杂或改性的方法,提高能源的利用

12、在保证氧气能够析出的前提下,我们可以通过碳掺杂、氮掺杂、硫掺杂、氟掺杂等阴离子掺杂的方法,对价带进行调节和控制,从而缩小禁带宽度;或通过运用其他的元素如掺杂银离子、铋离子等创造出新的价带小结 层状结构的光解水催化剂与体材料形态的光解水催化剂相比,最大的优势是能够利用层状空间作为合适的反应点,分别在不同层间析出氢气和氧气,减少了电子-空穴的复合几率,增大了反应效率 层状结构光催化剂 层状铌酸盐K4Nb6O17 的主体结构由NbO6 八面体组成,由两种不同的层(层和层) 交错而形成二维结构。层状主体带负电荷,层间分布着保持电荷平衡的K+ K4Nb6O17的层间空间能自发地发生水合作用,在高湿度的空

13、气和水溶液中很容易发生水合,这表明在光催化反应中,反应物水分子很容易进入层间空间离子交换层状铌酸盐 由于层间的K具有较好的交换特性,所以层状铌酸盐比较容易进行改性。例如Domen等将Ni 离子引入K4Nb6O17 的层中,经还原- 氧化处理后,形成的新型催化剂具有较高的催化活性 机理 在光的作用下,Ni-O 层中生成的自由电子(e - ) 移向位于层中的Ni 金属超微粒子,从而形成H2 ;而O2 则在层中形成。 这样,由于氢氧被有效分离,抑制了逆反应进程,从而提高了H2 的生成率Ni掺杂改性的作用NiO-K4Nb6O17光解水反应机理 具有类似结构的Rb4Nb6O17在负载NiOx后,在紫外光

14、的照射下也具有较高的分解水的活性 有的研究曾试图将其吸收光扩展到可见光范围,如通过离子交换将CdS沉积在层间,在有亚硫酸钠水溶液中实现了可见光放氢,但活性不高离子交换层状钙钛矿型光催化剂 分子组成通式为AMn-1NbnO3n+1 (AK, Rb,Cs; MCa, Sr, Na, Pb, etc.; n24)的钙钛矿型铌酸盐光催化剂,由带负电荷的钙钛矿型复合氧化物层和带正电荷的层间金属离子组成。它们的禁带宽度为3.23.5eV 这类层状化合物以原始状态存在时不能发生水合作用。但当层间的碱金属阳离子被质子交换后就能水合。该类催化剂在交换质子和负载Pt后,能显著提高光解水放氢的效率AMn-1NbnO

15、3n+1(n3)示意图 对于这类催化剂,即使负载有共催化剂也不能光解水同时放出氢和氧,而需要牺牲剂这是由于水完全分解为氢和氧必须在碱性条件下进行,而该类催化剂在碱性条件下不能发生水合作用(无法发生质子交换),从而抑制了其催化活性钙钛矿型铌酸盐光催化剂A2La2Ti3O10 (A=K, Rb)示意图另一类层状钙钛矿结构光催化剂的通式为A2-xLa2Ti3-xNbxO10 (A=K, Rb, Cs; x=0, 0.5, 1.0)。该类催化剂也是由层间碱金属阳离子和带负电荷的二维层状氧化物构成。这类催化剂的禁带宽度约为3.43.5 eV。与前一类层状化合物不同的是,后者可以自发水合能自发水合的层状钙

16、钛矿结构催化剂 这可作为一个非常有用的原则来指导制备具有水合层状钙钛矿型结构的光催化剂 随着层间的Ti4离子被Nb5取代比率的增加,水合作用降低,催化活性降低。这是由于在层状钙钛矿结构化合物中,层间含有较多的碱金属阳离子更容易发生水合。当层内的Nb5数量增加, 夹层内的碱金属阳离子就减少, 以维持层与夹层间的电荷平稳, 从而降低水合反应 采用镍(Ni,NiO)修饰 A2La2Ti3O10可以明显提高其光催化活性。在负载的镍粒子上光解水产生氢,而氧则在层间产生。在此类化合物中,负载4.0wtNi的Rb2La2Ti3O10的催化活性最高 采用Cr作为第三组分掺入 Ni-K2La2Ti3O10光催化

17、剂可以进一步改善其光催化活性。与未掺入Cr的催化剂相比,其光催化分解水的效率提高了两倍,同时,Cr的掺入也改善了催化剂的耐久性 R773-O473前处理(在773K氢气气氛还原2h然后在473K氧气气氛氧化1h)有助于提高产生氢气和氧气的稳定性和催化效率 提高A2La2Ti3O10催化活性的方法 日本宫崎大学Machida 等研究了具有层状结构钙钛矿型的光催化剂:RbLnTa2O7 (Ln = La 、Pr 、Nd 和Sm) 的电子结构和光催化性质的关系 通过FLAPW (全势缀加平面波法)方法研究发现,Ln 充满电子的4f轨道和4f 空轨道并不是完全固定的,而是部分的同O2p和Ta5d轨道进

18、行杂化,其杂化程度不仅影响了价带和导带的位置,还影响了它们的价态密度的分布。而光催化活性与其杂化的程度有很大的关系层状钽酸盐光催化剂La 3.9 1.2 0.6Pr 3.6 0.9 K Rb 其他特殊结构光催化剂负载RuO2的BiTi4O9结构示意图 研究表明:在矩形棱柱结构中,TiO6 通过钛离子偏离6 个氧原子中心产生三种变形的八面体;而在五边形棱柱结构中, TiO6 通过钛离子偏离6 个氧原子中心产生两种变形的八面体。这些变形的八面体对光分解水起了本质作用,其产生的偶极矩能有效地光激发产生的电荷。隧道结构能使RuO2粒子分散,RuO2粒子和周围的TiO6八面体相互作用,促进了电子和空穴向

19、吸附在催化剂上的物种转移 隧道结构对光催化活性的作用 K3Ta3Si2O13具有独特的柱状结构。3 条TaO6 链(此3 条TaO6 链分享同1 个角)通过双四面体Si2O7 单位连接呈柱状其显示出高的光催化活性,归功于高的Ta5d 导带和特殊的柱状结构。扭曲的结构和TaO6 八面体对光催化剂的能带结构和光催化的性质有明显的影响柱状结构的光催化剂 目前报道的光催化剂大多效率低,带隙较宽,只能在紫外区显示光化学活性,在太阳光谱中紫外光(400 nm 以下) 不到5 % ,而波长为400750 nm 的可见光占到43 % 因此,为了有效地利用太阳光,研究在可见光下具有高效光催化活性的催化材料非常有

20、意义,寻求廉价、环境友好并具有高性能的可见光光催化材料将是光催化发展进一步走向实用化的必然趋势可见光光催化剂牺牲剂的作用 光催化分解水反应可分为水还原和水氧化两个反应。一方面, 当水中有极易被氧化的还原性试剂(如乙醇或SO32- ) 存在时,光生空穴将不可逆的氧化这些还原剂,而不是氧化水。这使得光生电子富余,氢气放出反应可以得到促进;另一方面, 当水中存在电子接受体,如Ag + 或Fe3+ 时,导带上的光生电子将被它们消耗,氧气的放出反应可以得到促进提高可见光响应的方法牺牲剂的作用机理Pt/CdS 2.4 K2SO3 aq 850 WO3 2.8 AgNO3 aq 65 AgNbO3 2.86

21、 AgNO3 aq 421Bi2WO6 2.8 AgNO3 aq 55 In2O3(ZnO)3 2.6 AgNO3 aq 42 Pt/ In2O3(ZnO)3 2.6 CH3OH aq 1.1 1.3Pt/SrTiO3:Cr,Sb 2.4 CH3OH aq 78 Cu-ZnS 2.5 K2SO3 aq 450 光催化剂 能隙/eV 牺牲剂 活性/mol h-1 H2 O2可见光下需要牺牲剂的光催化剂及活性对宽禁带的常见催化剂进行元素掺杂利用某种元素创造新的价带制备固溶体以控制能带结构 研制可见光下将水分解为氢气和氧气的新型催化剂过程中,能带结构的控制是必要的。要从水中放出氢气,氧化物半导体光催

22、化剂的禁带必须较宽。研制可见光光催化剂应考虑以下几点策略能带结构控制CBVBMn+O2p可见光吸收紫外光吸收创造的价带或电子供体能级H+/H2O2/H200123电位/V研制可见光响应的光催化剂策略 对仅能在紫外光照射下工作的光催化剂掺杂过渡金属离子,可使其在可见光照射下发生光催化反应,这种方法已经得到广泛应用 这种光催化剂主要以TiO2 为主体材料,由于过渡金属离子的掺杂,其部分电子进入Ti 的d 轨道,使TiO2 颜色加深。然而,大多数情况下,掺杂离子仅作为光生电子和空穴的复合中心,导致主体材料无论在紫外光照射下,还是在可见光照射下, 光催化活性均有显著降低 过渡金属掺杂的光催化剂 Kud

23、o采用Rh掺杂SrTiO3,在Pt作为共催化剂的条件下可以在可见光激发下催化水制氢。其可见光响应机理为电子从由Rh离子形成的电子供体能级向SrTiO3的导带发跃迁,反应出对可见光的吸收 Kato研究发现在可见光激发下,Cr掺杂SrTiO3可在含甲醇的水溶液中催化水分解制氢,但这需要一段很长的诱导期。通过采用Ta离子与Cr离子共掺杂可以缩短其诱导期同时增大催化制氢的活性。这是由于Ta5离子的掺入,为了保持电荷平衡,导致晶格中Cr6与氧缺陷的形成受到了抑制,从而抑制了光生电子-空穴的再结合,提高了催化活性实例 在过渡金属离子掺杂体系中,复合中心的形成并不能完全被抑制,且通过掺杂形成的不纯能级通常是

24、不连续的,这使得光生空穴在此能级上迁移不方便。因此,应该用某些轨道(O2p轨道除外)组成一个连续的价带。目前, 能形成这样能级的Ag + 和具有6s2 电子构型的Bi3 + ,已经引起人们的重视价带控制的光催化剂 研究发现,具有白钨矿结构的Bi2VO4和具有钙钛矿结构的AgNbO3在可见光照射下,分解硝酸银水溶液有较高的放氧活性。Bi2VO4 比典型的光催化剂WO3 具有更高放氧活性,在450nm 处的量子效率可以达到9 % BiVO4 和AgNbO3 的价带拥有Bi6s和Ag4d与O2p的混合轨道,结果导致其价带电位的增大和禁带宽度的减小。尽管BiVO4 不具备使氢气放出的电位,但它具有发生四电子反应的放氧活性,其Bi6s和O2p 轨道的价带实际上不仅具有放出氧气的热力学电位而且具有使氧气放出的动力学电位实例 硫化物半导体的价带通常由S3p轨道组成,它的位置比O2p轨道更负。因此,有多种硫化物半导体材料具有窄禁带。尽管金属硫化物总是存在着光腐蚀问题,但它们作为可见光条件下的光催化剂,同样引起人们的兴趣,如CdS 在可见光照射下具有放氢活性。有牺牲剂存在时,光腐蚀过程将在很大程度上被抑制 目前正在研究的金属硫化物,如ZnS 和AgInS2形成的纤维锌矿型固溶体AgIn

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论