制冷培训教材_第1页
制冷培训教材_第2页
制冷培训教材_第3页
制冷培训教材_第4页
制冷培训教材_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 市场部制冷原理培训讲义1 制冷方法概述制冷技术是为适应人们对低温条件的需要而产生和发展起来的。制冷作为一门科学是指用人工的方法在一定时间和一定空间内将某物体或流体冷却,使其温度降到环境温度以下,并保持这个低温。这里所说的冷是相对于环境而言的。灼热的铁放在空气中,通过辐射和对流向环境传热,逐渐冷却到环境温度。它是自发的传热降温,属于自然冷却,不是制冷。制冷就是从物体或流体中取出热量,并将热量排放到环境介质中去,以产生低于环境温度的过程。机械制冷中所需机器和设备的总合称为制冷机。制冷机中使用的工作介质称为制冷剂。制冷剂在制冷机中循环流动,同时与外界发生能量交换,即不断地从被冷却对象中吸取热量,向

2、环境排放热量。制冷剂一系列状态变化过程的综合为制冷循环。为了实现制冷循环,必须消耗能量。所消耗能量的形式可以是机械能、电能、热能、太阳能或其它可能的形式.制冷技术的研究内容可以概括为以下三方面:研究获得低温的方法和有关的机理以及与此相应的制冷循环,并对制冷循环进行热力学的分析和计算。研究制冷剂的性质,从而为制冷机提供性能满意的工作介质。机械制冷要通过制冷剂热力状态的变化才能实现。所以,制冷剂的热物理性质是进行循环分析和计算的基础数据。此外,为了使制冷剂能实际应用,还必须掌握它们的一般物理化学性质。研究实现制冷循环所必须的各种机械和技术设备,包括它们的工作原理、性能分析、结构设计,以及制冷装置的

3、流程组织、系统配套设计。此外,还有热绝缘问题,制冷装置的自动化问题,等等。2物质相变制冷物质有三种集态气态、液态、固态。物质集态的改变称之为相变。相变过程中,由于物质分子的重新排列和分子热运动速度的改变,会吸收或放出热量。这种热量称作潜热。物质发生从质密态到质稀态的相变是将吸收潜热;反之,当它发生有质稀态向质密态的相变时,则放出潜热。物质相变制冷是利用液体在低温下的蒸发过程及固体在低温下的熔化或升华过程向被冷却物体吸收热量-即制冷量。因此,相变制冷分为液体气化制冷与固体熔化与升华制冷,由于液体自身具有流动性,液体气化制冷是广泛应用的。液体汽化成蒸气的过程吸收热量,从而达到制冷的目的,为了使其连

4、续不断地工作,成为一个循环,便必须使制冷剂在低压下蒸发汽化、蒸气升压、高压气体液化和高压液体降压。蒸气压缩式制冷、吸收式制冷、蒸气喷射式和吸附式制冷都具备上述四个基本过程,属于液体汽化制冷。液体蒸发制冷液体气化形成蒸汽,利用该过程的吸热效应制冷的方法称液体蒸发制冷。当液体处在密闭的容器内时,若容器内除了液体和液体本身的蒸汽外不含任何其它气体,那么液体和蒸气在某一压力下将达到平衡。这种状态称饱和状态。如果将一部分饱和蒸汽从容器中抽出,液体就必然要再气化出一部分蒸汽来维持平衡。我们以该液体为制冷剂,制冷剂液体气化时要吸收气化潜热,该热量来自被冷却对象,只要液体的蒸发温度比环境温度低,便可使被冷却对

5、象变冷或者使它维持在环境温度下的某一低温。为了使上述过程得以连续进行,必须不断地从容器中抽走制冷剂蒸汽,再不断地将其液体补充进去。通过一定的方法将蒸汽抽出,再令其凝结为液体后返回到容器中,就能满足这一要求。为使制冷剂蒸气的冷凝过程可以在常温下实现,需要将制冷剂蒸气的压力提高到常温下的饱和压力,这样,制冷剂将在低温低压下蒸发,产生制冷效应;又在常温和高压下凝结向环境温度的介质排放热量。凝结后的制冷剂液体由于压力较高,返回容器之前需要先降低压力。由此可见,液体蒸发制冷循环必须具备以下四个基本过程:制冷剂液体在低压下气化产生低压蒸汽,将低压蒸汽抽出并提高压力变成高压气。将高压气冷凝为高压液体,高压液

6、体再降低压力回到初始的低压状态。其中将低压蒸汽提高压力需要能量补偿。单级蒸气压缩制冷循环单级蒸气压缩式制冷系统由压缩机,冷凝器,膨胀阀和蒸发器组成。其工作过程如下:制冷剂在压力温度下沸腾,低于被冷却物体或流体的温度。压缩机不断地抽吸蒸发器中产生的蒸气,并将它压缩到冷凝压力,然后送往冷凝器,在压力下等压冷却和冷凝成液体,制冷剂冷却和冷凝时放出的热量传给冷却介质(通常是水或空气),与冷凝压力相对应的冷凝温度一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其他节流元件进入蒸发器。在实际的制冷循环中,与理论循环是有差别的,例如:理论循环中没有考虑到制冷剂液体过冷和蒸气过热的影响;也没有考虑冷凝器蒸发

7、器和连接各设备的管道中因制冷的流动而产生的压降;压缩机的实际过程也并非是等熵过程;系统中存在着不凝性气体等。3蒸气单级理论循环单级蒸气压缩式制冷系统如下图1所示。它由压缩机、冷凝器、膨胀阀和蒸发器组成。其工作过程如下:制冷剂在蒸发压力下沸腾, 蒸发温度低于被冷却物体或流体的温度。压缩机不断地抽吸蒸发器中产生的蒸气,并将它压缩到冷凝压力, 然后送往冷凝器,在冷凝压力下等压冷却和冷凝成液体,制冷剂冷却和冷凝时放出的热量传给冷却介质(通常是水或空气) 与冷凝压力相对应的冷凝温度一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其它节流元件进入蒸发器。 当制冷剂通过膨胀阀时,压力从冷凝压力降到蒸发压力

8、,部分液体气化,剩余液体的温度降至蒸发温度,于是离开膨胀阀的制冷剂变成温度为蒸发温度的两相混合物。 混合物中的液体在蒸发器中蒸发,从被冷却物体中吸取它所需要的气化潜热。混合物中的蒸气通常称为闪发蒸气,在它被压缩机重新吸入之前几乎不再起吸热作用 。 在整个循环过程中,压缩机起着压缩和输送制冷剂蒸气并造成蒸发器中低压力、冷凝器中高压力的作用,是整个系统的心脏; 节流阀对制冷剂起节流降压作用并调节进入蒸发器的制冷剂流量;蒸发器是输出冷量的设备,制冷剂在蒸发器中吸收被冷却物体的热量,从而达到制取冷量的目的; 冷凝器是输出热量的设备,从蒸发器中吸取的热量连同压缩机消耗的功所转化的热量的冷凝器中被冷却介质

9、带走。根据热力学第二定律, 压缩机所消耗的功(电能)起了补偿作用,使制冷剂不断从低温物体中吸热,并向高温物体放热,从而完整个制冷循环。 各部件的作用 压缩机: 压缩和输送制冷蒸汽,并造成蒸发器中低压、冷凝器中高压,是整个系统的心脏。冷凝器: 是输出热量的设备,将制冷剂在蒸发器中吸收的热量和压缩机消耗功所转化的热量排放给冷却介质。节流阀: 对制冷剂起节流降压作用,并调节进入蒸发器的制冷剂流量。蒸发器: 是输出冷量的设备,制冷剂在蒸发器中吸收被冷却对象的热量,从而达到制冷的目的。 压焓图: 压焓图的结构如下图2所示。以绝对压力为纵坐标(为了缩小图的尺寸,提高低压区域的精度, 通常纵坐标取对数坐标)

10、,以焓值为横坐标。 图中临界点K左边的粗实线为饱和液体线,线上的任何一点代表一个饱和液体状态,干度 x=0。 右边的粗实线为饱和蒸气线,线上任何一点代表一个饱和蒸气状态,干度 x=1。这两条粗实线将图分 为三个区域:饱和液体线的左边为过冷液体,过冷液体的温度低于相同压力下饱和液体的温度;饱和蒸气线的 右边是过热蒸气区,该区域内的蒸气称为过热蒸气,它的温度高于同一压力下饱和蒸气的温度; 两条线之间的区域为两相区,制冷剂在该区域内处于气、液混合状态(湿蒸气状态)。图中共有 六种等参数线簇:等压线-水平线;等焓线-垂直线;等温线-液体区几乎为垂直线。两相区内,因制冷剂状态的变化是在等压、等温下进行,

11、故等 温线与等压线重合,是水平线。过热蒸气区为向右下方弯曲的倾斜线;等熵线-向右上方倾斜的实线;等容线-向右上方倾斜的虚线,比等熵线平坦;等于度线-只存在于湿蒸气区域内,其方向大致与饱和液体线或饱和蒸气线相近,视干度大小而定。 各部件的作用 制冷循环过程在压焓图上的表示 单级蒸气压缩制冷理论循环工作过程可清楚地表示在压焓图上,如图3所示。对于最简单的理论循环(或称简单的饱和循环),离开蒸发器和进入压缩机的制冷剂蒸气是处于蒸发 压力下的饱和蒸气; 离开冷凝器和进入膨胀阀的液体是处于冷凝压力下的饱和液体;压缩机的压缩过程为等熵压缩; 制冷剂通过膨胀阀节流时,其前、后焓值相等;制冷剂在蒸发和冷凝过程

12、中没有压力损失; 在各设备的连接管道中制冷剂不发生状态变化;制冷剂的冷凝温度等于冷却介质温度, 蒸发温度等于被冷却介质的温度。显然,上述条件与实际循环是存在着偏差的, 但由于理论循环可使问题得到简化,便于对它们进行分析研究,而且理论循环的各个过程均是 实际循环的基础,它可作为实际循环的比较标准,因此仍有必要对它加以详细的分析与讨论。现将图3中各状态点及各个过程叙述如下:点1表示制冷剂进入压缩机的状态。它是对应于蒸发温度T0的饱和蒸气。根据压力与饱和温度的对应关系, 该点位于 的等压线与饱和蒸气线(x=1)的交点上。 点2表示制冷剂出压缩机时的状态,也就是进冷凝器时的状态。过程线1-2表示制冷剂

13、蒸气在压缩机中的等熵压缩过程 ,压力由蒸发压力 升高到冷凝压力 。因此该点可通过1点的等熵线和压力为冷凝压力的等压线的交点来确定。由于压缩过程中外界对制冷剂作功,制冷剂温度升高,因此点2表示过热蒸气状态。 点3表示制冷剂出冷凝器时的状态。它是与冷凝温度 所对应的饱和液体。过程线2-2-3表示制冷剂在冷凝器内的冷却(2-2)和冷凝(2-3)的过程。由于这个过程是在冷凝压力 不变的情况下进行的,进入冷凝器的过热蒸气首先 将部分热量放给外界冷却介质,在等压下冷却成饱和蒸气(点2),然后再在等压、等温下继续放出热量, 直至最后冷凝成饱和液体(点3)。因此,冷凝压力的等压线和x0的饱和液体线的交点即为点

14、3的状态。 点4表示制冷剂出节流阀时的状态,也就是进入蒸发器时的状态。 过程线3-4表示制冷剂在通过节流阀时的节流过程。在这一过程中,制冷剂的压力由冷凝压力降到 蒸发压力 ,温度由冷凝温度降到蒸发温度 ,并进入两相区。由于节流前后制冷剂的焓值不变,因此由点3作等焓线与蒸发压力的等压线的交点即为点4的状态。由于节流过程是一个不可逆过程,所以用一虚线表示3-4过程。 过程线4-1表示制冷剂在蒸发器中的气化过程。由于这一过程是在等温、等压下进行的,液体制冷剂吸取被冷却介质的热量(即制冷)而不断气化,制冷剂的状态沿蒸发压力的等压线 向干度增大的方向变化,直到全部变为饱和蒸气为止。这样,制冷剂的状态又重

15、新回到进入压缩机前的状态点1,从而完成一个完整的理论制冷循环。 单级蒸气压缩式制冷理论循环的热力计算在进行制冷循环的热力计算之前,首先需要了解系统中各设备内功和热量的变化情况,然后再对循环的性能指标进行分析和计算。根据热力学第一定律,如果忽略位能和动能的变化,稳定流动的能量方程可表示为(1) 式中 Q 和 P 是单位时间内加给系统的热量和功;qm是流进或流出该系统的稳定质量流量;h是比焓;下标1和2分别表示流体流进系统和离开系统的状态点.当热量和功朝向系统时,Q 和 P 取正值. (1) 节流阀 制冷剂液体通过节流孔口时绝热膨胀,对外不作功, P=0,故方程式(1)变为(2)因此,可认为节流前

16、后其值不变.节流阀出口处(点4)为两相混合物,它的焓值也可由下式表示:式中 hf0 和hg0 分别为蒸发压力p0 下饱和液体和饱和蒸汽的焓值;x4 为制冷剂出节流阀时的干度。将上式移项并整理得(3) 点4比容为(4)式中 Vf0 和Vg0 分别为蒸发温度t0 下饱和液体和饱和蒸汽的比容。 (2)压缩机 如果忽略压缩机与外界环境所交换的热量,则由式(1)得(5)式中 (h2-h1)表示压缩机每压缩并输送1kg的制冷剂所消耗的功,称为理论比功。 (3)蒸发器 被冷却物质通过蒸发器向制冷剂传送Q0 ,因为蒸发器不作功,故方程式(1)变为(6)由上式可以看出制冷量与两个因数有关:制冷剂的质量流量qm和

17、制冷剂进出口蒸发器的焓差(h1-h4)。(h1-h4)称为单位质量制冷量,它表示1kg制冷剂在蒸发器内从被冷却物质中吸取的热量,用q0表示。 质量流量与容积qv有如下关系:(7) 用压缩机进口出V1代入上式得:(8) 将方程(8)代入(6)得:(9)(4)冷凝器 假设制冷剂在冷凝器中向外界放出热量为Qk ,那么(10)式中 (h2-h3)称为冷凝器单位热负荷,用qv表示。它表示1kg制冷剂蒸汽在冷凝器中放出的热量。 (5)制冷系数 按定义,在理论循环中,制冷系数可用下式表示(11)在下一页我们通过一个例题来讲解热力计算过程 例题:假定循环为单级压缩蒸气制冷的理论循环,蒸发温度t0=10,冷凝温

18、度为35,工质为R22,循环的制冷量Q0=55kw,试对该循环进行热力计算。解:该循环的压焓图如下所示: 根据R22的热力性质表,查出处于饱和线上的有关状态参数值:h1=401.555 kJ/kg v1=0.0653 m3/kgh3=h4=243.114 kJ/kg p0=0.3543 MPapk=1.3548 MPa由图可知:h2=435.2 kJ/kg t2=57图4 压焓图1 单位质量制冷量q0=h1h4=158.441 kJ/kg 2 单位容积制冷量3 制冷剂质量流量4 理论比功 w0=h2h1=33.645 kJ/kg 5 压缩机消耗的理论功率P0=qmw0=11.68 kw6 压缩

19、机吸入的容积V=qmv1=0.0227 m3/s 7 制冷系数 8 冷凝器单位热负荷qk=h2h3=192.086 kJ/kg 9 冷凝器热负荷Qk=qmqk=66.67 kw制冷剂是制冷机中的工作流体,它在制冷机系统中循环流动, 通过自身热力状态的循环变化不断与外界发生能量交换,达到制冷的目的。 习惯上又称制冷剂为制冷工作介质或简称工质。液体蒸发式制冷机中,制冷剂在要求的低温下蒸发,从被冷却对象中吸取热量; 再在较高的温度下凝结,向外界排放热量。所以,只有在工作温度范围能够汽化和 凝结的物质才有可能作为制冷剂使用。多数制冷剂在常温和常压下呈气态。氟里昂是饱和碳氢化合物的氟、氯、溴衍生物之总称

20、。最早使用的是R12,以后使用范围迅速扩大。 不同的氟里昂物质在热力性质上各不相同,能适应不同制冷温度和容量的要求;其中许多物质, 尤其是氯氟烃(碳氢化合物的氟、氯完全衍生物)在物理、化学性质上又有许多共同的优点(如无毒、 无燃爆危险、不腐蚀金属、热稳定性与化学稳定性好等),便于实用。所以这些制冷剂的应用曾对制冷 工业带来了变革性的进步。已经成熟使用的氟里昂制冷剂以氯氟烃类物质为主(如R11,R12, R114,R115等),还有某些不完全卤代烃(如R22)以及氟里昂制冷剂的混合物(如R500,R502,R503等)。 1974年发现大气臭氧层破坏的化学机制。到80年代,科学确认了氯氟烃是引起

21、臭氧层破坏和温室效应的 危害物质。1987年在加拿大蒙特利尔(Montreal)联合国环境保护计划会议签署了关于臭氧层衰减物质的 蒙特利尔协定。该协定规定了限制和禁止生产对臭氧层破坏作用大的物质,R11,R12,R113,R114,R115, R12B1,R13B1和R114B2是首批受禁物质,到21世纪完全停止生产。R22的环境破坏相对小一些,但最终也将 被禁止。自此开始了全球性的技术对策活动,制冷界也同时开始了更新制冷剂的工作。目前新制冷剂的 开发、研究和应用正在进行中,取代CFCs最有希望的是氟里昂中的HFC类物质。较明朗化的趋势是:高温 制冷剂用R123,中温制冷剂用R134a和R15

22、2a,低温制冷剂用R23在整个循环过程中,压缩机起着压缩和输送制冷级蒸气并造成蒸发器中的低压力,冷凝器中的高压力的作用,是整个系统的心脏;节流阀对制冷剂起节流降压作用并调节进入蒸发器的制冷剂流量;蒸发器是输出冷量的设备,制冷剂在蒸发器中吸收被冷却物体的热量,从而达到制取冷量的目的;冷凝器是输出热量的设备,从蒸发器中吸取的热量连压缩机消耗的功转化的热量在冷凝器中被冷却介质带走。蒸汽压缩式制冷系统由压缩机、冷凝器、膨胀阀、蒸发器组成,用管道将它们连接成一个密封系统。制冷剂液体在蒸发器内以低温与被冷却对象发生热交换,吸收被冷却对象的热量并气化,产生的低压蒸汽被压缩机吸入,经压缩后以高压排出。压缩机排

23、出的高压气态制冷剂进冷凝器,被常温的冷却水或空气冷却,凝结成高压液体。高压液体流经膨胀阀时节流,变成低压低温的气液两相混合物,进入蒸发器,其中的液态制冷剂在蒸发器中蒸发制冷,产生的低压蒸汽再次被压缩机吸入。如此周而复始,不断循环。蒸气压缩式制冷机是得到最广泛应用的制冷机,因此它是本书的重点内容之一。制冷的热力学原理从热力学角度说,制冷系统是利用逆向循环的能量转换系统。按补偿能量的形式(或驱动方式),前面所提及的制冷方法归为两大类:以机械能或电能为补偿的和以热能为补偿的。前者如蒸气压缩式、热电式制冷机等;后者如吸收、蒸气喷射、吸附式制冷机等。两类制冷机的能量转换关系如图1所示。 图1 制冷机的能

24、量转换关系(a) 以电能或机械能驱动的制冷机(b) 以热能驱动的制冷机热力学关心的是能量转换的经济性,即花费一定的补偿能,可以收到多少制冷效果(制冷量)。为此,对于机械或电驱动方式的制冷机引入制冷系数 来衡量;对于热能驱动方式的制冷机,引入热力系数来衡量。 (1) (2)式中 - 制冷机的制冷量; - 冷机的输入功; - 驱动热源向制冷机输入的热量。 国外习惯上将制冷系数和热力系数统称为制冷机的性能系数COP(Coefficience of Performance)。我们要研究一定条件下COP的最高值。对于电能或机械能驱动的制冷机,参见图1(a)。制冷机消耗功w实现从低温热源(被冷却对象,温度

25、)吸热,向高温热源(通常为环境,温度 )排热。假定两热源均为恒温热源,向高温热源的排热量为 ,由低温热源的吸热量(即制冷量)为,制冷机为可逆循环。 由热力学第一定律有 (3) 由热力学第二定律,在两个恒温热源间工作的可逆机,一个循环的熵增等于零,即 (4) 将式(3)代入式(4)得即 (5) 由定义式(1),则可逆制冷的制冷系数为 (6) 式(6)说明:两恒温热源间工作的可逆制冷机,其制冷系数只与热源温度有关,而与制冷机使用的制冷剂性质无关。 的值与两热源温度的接低程度有关, 与 越接近( /越小),则 越大;反之 越小。实际制冷机制冷系数 随热源温度的变化趋势与可逆机是一致的。 对于以热能驱动的制冷机,参见图 。制冷机从驱动热源(温度为 )吸收热量 作为补偿,完成从低温热原吸热,向高温热源排热的能量转换。我们假定驱动热源也是恒温热源,其它假定同前。那么类似地推导热能驱动的可逆制冷机的性能系数 由热力学第一定律有:(7) 由热力学第二定律,循环中即 (8) 利用式(7)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论