《几何画板》在高中数中的应用_第1页
《几何画板》在高中数中的应用_第2页
《几何画板》在高中数中的应用_第3页
《几何画板》在高中数中的应用_第4页
《几何画板》在高中数中的应用_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.?几何画板?在高中数学中的应用徐秋慧对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的开展来说,形象思维是最早出现的,并在数学研究和教学中都起着重要的作用。不难想象,一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的才能。同样,一个学生假如根本不具备数学想象力,要把数学学好那也是不可能的。正如前苏联著名数学家A.H.柯尔莫戈洛夫所指出的:“只要有可能,数学家总是尽力把他们正在研究的问题从几何上视觉化。因此,随着计算机多媒体的出现和飞速开展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深化的变革用计算机辅助教学,改善人们的认知环境越来越受到重视。从

2、国外引进的教育软件?几何画板?以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学老师看好,并已成为制作中学数学课件的主要创作平台之一。那么,?几何画板?在高中数学教学中有哪些应用呢?作为一名高中数学老师笔者就此谈几点体会:一、?几何画板?在高中代数教学中的应用“函数是中学数学中最根本、最重要的概念,它的概念和思维方法浸透在高中数学的各个部分;同时,函数是以运动变化的观点对现实世界数量关系的一种刻划,这又决定了它是对学生进展素质教育的重要材料。就如华罗庚所说:“数缺形少直观,形缺数难入微。函数的两种表达方式解析式和图象之间常常需要对照如研究函数的单调性、讨论方

3、程或不等式的解的情况、比较指数函数和对数函数图象之间的关系等。为理解决数形结合的问题,在有关函数的传统教学中多以老师手工绘图,但手工绘图有不准确、速度慢的弊端;应用几何画板快速直观的显示及变化功能那么可以抑制上述弊端,大大进步课堂效率,进而起到事倍功半的效果。详细说来,可以用?几何画板?根据函数的解析式快速作出函数的图象,并可以在同一个坐标系中作出多个函数的图象,如在同一个直角坐标系中作出函数y=x2、y=x3和y=x1/2的图象,比较各图象的形状和位置,归纳幂函数的性质;还可以作出含有假设干参数的函数图象,当参数变化时函数图象也相应地变化,如在讲函数y=Asinx+的图象时,传统教学只能将A

4、、代入有限个值,观察各种情况时的函数图象之间的关系;利用?几何画板?那么可以以线段b、T的长度和A点到x轴的间隔 为参数作图如图1,当拖动两条线段的某一端点即改变两条线段的长度时分别改变三角函数的首相和周期,拖动点A那么改变其振幅,这样在教学时既快速灵敏,又不失一般性。?几何画板?在高中代数的其他方面也有很多用处。例如,借助于图形对不等式的一些性质、定理和解法进展直观分析由“半径不小于半弦证明不等式“a+b2a、bR+等;再比方,讲解数列的极限的概念时,作出数列an=10-n的图形即作出一个由离散点组成的函数图象,观察曲线的变化趋势,并利用?几何画板?的制表功能以“项数、这一项的值、这一项与0

5、的绝对值列表,帮助学生直观地理解这一较难的概念。二、?几何画板?在立体几何教学中的应用立体几何是在学生已有的平面图形知识的根底上讨论空间图形的性质;它所用的研究方法是以公理为根底,直接根据图形的点、线、面的关系来研究图形的性质。从平面图形到空间图形,从平面观念过渡到立体观念,无疑是认识上的一次飞跃。初学立体几何时,大多数学生不具备丰富的空间想象的才能及较强的平面与空间图形的转化才能,主要原因在于人们是依靠对二维平面图形的直观来感知和想象三维空间图形的,而二维平面图形不可能成为三维空间图形的真实写照,平面上绘出的立体图形受其视角的影响,难于综观全局,其空间形式具有很大的抽象性。如两条互相垂直的直

6、线不一定画成交角为直角的两条直线;正方体的各面不能都画成正方形等。这样一来,学生不得不根据歪曲真象的图形去想象真实情况,这便给学生认识立体几何图形增加了困难。而应用?几何画板?将图形动起来,就可以使图形中各元素之间的位置关系和度量关系惟妙惟肖,使学生从各个不同的角度去观察图形。这样,不仅可以帮助学生理解和承受立体几何知识,还可以让学生的想象力和创造力得到充分发挥。像在讲二面角的定义时如图2,当拖动点A时,点A所在的半平面也随之转动,即改变二面角的大小,图形的直观地变动有利于帮助学生建立空间观念和空间想象力;在讲棱台的概念时,可以演示由棱锥分割成棱台的过程如图3,更可以让棱锥和棱台都转动起来,使

7、学生在直观掌握棱台的定义,并通过棱台与棱锥的关系由棱锥的性质得出棱台的性质的同时,让学生欣赏到数学的美,激发学生学习数学的兴趣;在讲锥体的体积时,可以演示将三棱柱分割成三个体积相等的三棱锥的过程如图4,既防止了学生空洞的想象而难以理解,又锻炼了学生用分割几何体的方法解决问题的才能;在用祖恒原理推导球的体积时,运用动画和轨迹功能作图5,当拖动点O时,平行于桌面的平面截球和柱锥所得截面也相应地变动,直观美丽的画面在学生学得知识的同时,给人以美的感受,创立一个轻松、乐学的气氛。语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。假如有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对进步学生

8、的程度会大有裨益。如今,不少语文老师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果老师费力,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的为难场面的关键就是对文章读的不熟。常言道“书读百遍,其义自见,假如有目的、有方案地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然浸透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和开展。三、?几何画板?在平面解析几何教学中的应用课

9、本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一那么名言警句即可。可以写在后黑板的“积累专栏上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,老师定期检查等等。这样,一年就可记300多条成语、300多那么名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏在学生脑中,自然会出口成章,写作时便会随心所欲地“提取出来,使文章增色添辉。平面解析几何是用代数方法来研究几何问题的一门数学学科,它研究

10、的主要问题,即它的根本思想和根本方法是:根据条件,选择适当的坐标系,借助形和数的对应关系,求出表示平面曲线的方程,把形的问题转化为数来研究;再通过方程,研究平面曲线的性质,把数的研究转化为形来讨论。而曲线中各几何量受各种因素的影响而变化,导致点、线按不同的方式作运动,曲线和方程的对应关系比较抽象,学生不易理解,显而易见,展示几何图形变形与运动的整体过程在解析几何教学中是非常重要的。这样,?几何画板?又以其极强的运算功能和图形图象功能在解析几何的教与学中大显身手。如它能作出各种形式的方程普通方程、参数方程、极坐标方程的曲线;能对动态的对象进展“追踪,并显示该对象的“轨迹;能通过拖动某一对象如点、

11、线观察整个图形的变化来研究两个或两个以上曲线的位置关系。详细地说,比方在讲平行直线系y=x+b或中心直线系y=kx+2时,如图6所示,分别拖动图1中的点A和图2中的点B时,可以相应的看到一组斜率为1的平行直线和过定点0,2的一组直线不包括y轴。再比方在讲椭圆的定义时,可以由“到两定点F1、F2的间隔 之和为定值的点的轨迹入手如图7,令线段AB的长为“定值,在线段AB上取一点E,分别以F1为圆心、AE的长为半径和以F2为圆心、AE的长为半径作圆,那么两圆的交点轨迹即满足要求。先让学生猜测这样的点的轨迹是什么图形,学生各抒己见之后,老师演示图71,学生豁然开朗:“原来是椭圆。这时老师用鼠标拖动点B

12、即改变线段AB的长,使得|AB|=|F1F2|,如图72,满足条件的点的轨迹变成了一条线段F1F2,学生开场慎重起来并认真思索,不难得出图73|AB|F1F2|时的情形。经过这个过程,学生不仅能很深化地掌握椭圆的概念,也锻炼了其思维的严密性。要练说,得练听。听是说的前提,听得准确,才有条件正确模拟,才能不断地掌握高一级程度的语言。我在教学中,注意听说结合,训练幼儿听的才能,课堂上,我特别重视老师的语言,我对幼儿说话,注意声音清楚,上下起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种兴趣活动,培养幼儿边听边记,边听边想,边听边说的才能,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论