




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Ch4、不定积分§1、不定积分的概念与性质1、 原函数与不定积分定义1:若,则称为的原函数。 连续函数一定有原函数; 若为的原函数,则也为的原函数;事实上, 的任意两个原函数仅相差一个常数。事实上,由,得故表示了的所有原函数,其中为的一个原函数。定义2:的所有原函数称为的不定积分,记为,积分号,被积函数,积分变量。显然例1、 求下列函数的不定积分2、 基本积分表(共24个基本积分公式)3、 不定积分的性质例2、 求下列不定积分§2、不定积分的换元法一、 第一类换元法(凑微分法)1、例1、求不定积分第二类换元法2、例2、求不定积分 例3、 求不定积分例4、求不定积分二、 第二
2、类换元法1、三角代换例1、解:令,则原式=例2、解:令原式=例3、解:令,则原式= 例4、解:令,则 原式=例5、解:令,则原式= 例6、解:令,则原式=小结:中含有可考虑用代换2、无理代换例7、解:令原式=例8、解:令原式=例9、解:令原式=例10、解:令原式4、 倒代换例11、解:令原式 §3、分部积分法分部积分公式:,故 (前后相乘)(前后交换)例1、例2、例3、或解:令原式例4、或解:令原式例5、故例6、例7、§4、两种典型积分一、有理函数的积分有理函数可用待定系数法化为部分分式,然后积分。例1、将化为部分分式,并计算解:故或解: 例2、例3、例4、二、三角函数有理式的积分 对三角函数有理式积分,令, ,故,三角函数有理式积分即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公立学校教师与学校劳动合同
- 与读书有关的课件模板
- 肇庆市实验中学高三生物三四五高效课堂教学设计:异常遗传专题
- 江西省南昌市进贤二中2025年高三生物试题(下)期中试卷含解析
- 江西省南昌市10所省重点2025届高三复习统一检测试题生物试题含解析
- 新疆乌鲁木齐市达标名校2024-2025学年初三下学期寒假开学考试语文试题含解析
- 新疆乌鲁木齐市沙依巴克区2025届三下数学期末检测试题含解析
- 上海应用技术大学《电路理论实验》2023-2024学年第二学期期末试卷
- 江西司法警官职业学院《中学历史名师教学赏析》2023-2024学年第二学期期末试卷
- 技术开发与合作合同
- 2025年化学检验工职业技能竞赛参考试题库(共500题)
- 农村合作社农业产品供应合同
- 中国镀锡铜丝行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- GB/T 320-2025工业用合成盐酸
- 安装工程类别划分标准及有关规定31183
- 【道法】做核心思想理念的传承者(教案)-2024-2025学七年级道德与法治下册(统编版)
- 2025-2030中国复合材料行业市场发展现状及发展趋势与投资风险研究报告
- 2025年濮阳职业技术学院单招职业适应性考试题库及答案1套
- 血站新进员工培训
- 牧原股份养殖场臭气治理技术的创新应用
- 2025年社工招聘考试试题及答案
评论
0/150
提交评论