版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学讲座 高考中的平面向量问题龚天勇考纲解读§ 要掌握平面向量的概念与性质(共线、模、夹角、垂直等);§ 在选择填空中要重视平面向量的几何运算,也要重视坐标运算(有时要自己建系);要注意三角形的重心、垂心的向量判断;§ 在其它知识如解析几何中要注意平面向量的工具作用(如平行、垂直可转化向量的关系求解)。一、平面向量基本概念与性质:1向量的概念向量:既有大小又有方向的量。向量一般用来表示,或用有向线段的起点与终点的大写字母表示,如:;坐标表示法。向量的大小即向量的模(长度),记作|。向量不能比较大小,但向量的模可以比较大小。零向量:长度为0的向量,记为,其方向是
2、任意的,与任意向量平行是零向量0。由于的方向是任意的,且规定平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。注意零向量与0的区别单位向量:模为1个单位长度的向量,向量为单位向量1。平行向量(共线向量):方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作。由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。注意:(1)、数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,(2)
3、、理解平行向量中的“平行”与几何中的“平行”是不一样的。相等向量:长度相等且方向相同的向量叫相等向量;相等向量经过平移后总可以重合,记为。两个向量相等的充要条件是对应坐标相等;即:。2向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法。设,则+=。规定:(1);(2)向量加法满足交换律与结合律;向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是始点重合,和向量是始点与两个已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是在向量“首尾相接”时,由第一个向量的起点指向最后一个向量的终点的有向线段就
4、表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。向量加法的三角形法则可推广至多个向量相加: ,但这时必须“首尾相连”。(2)向量的减法 相反向量:与长度相等、方向相反的向量,叫做的相反向量。记作,零向量的相反向量仍是零向量。关于相反向量有: (i)=; (ii) +()=()+=;(iii)若、是互为相反向量,则=,=,+=。向量减法:求两个向量差的运算,叫做向量的减法。向量加上的相反向量叫做与的差,记作:作图法:当、有共同起点时,可以表示为从的终点指向的终点的向量;(3)实数与向量的积实数与向量的积是一
5、个向量,记作,它的长度与方向规定如下:();()当时,的方向与的方向相同;当时,的方向与的方向相反;当时,方向是任意的。数乘向量满足交换律、结合律与分配律。3两个向量共线定理:向量与非零向量共线有且只有一个实数,使得=。4平面向量的基本定理如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:其中不共线的向量叫做表示这一平面内所有向量的一组基底。5、平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.6平面向量的坐标表示(1)平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底由平面向量的基本定理知,该平面内的任
6、一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。规定:相等的向量坐标相同,坐标相同的向量是相等的向量;向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其起点、终点的相对位置有关系。(2)平面向量的坐标运算:若,则;若,则;若=(x,y),则=(x, y);若,则。7两个向量的夹角 (1)定义:已知两个 非零 向量a和b,作 =a, =b,则AOB=叫做向量a与b的夹角. (2)范围: 向量夹角的范围是 ,a与b同向时, 夹角=0° ;a与b反向时,夹角= 180
7、6;(3)向量垂直 如果向量a与b的夹角是 90°,则a与b垂直,记作 ab8、向量的数量积(1)两个非零向量的夹角已知非零向量a与a,作,则AA()叫与的夹角;说明:当时,与同向;当时,与反向;当时,与垂直,记;注意在两向量的夹角定义,两向量必须是同起点的,范围0°q180°。(2)数量积的概念已知两个非零向量与,它们的夹角为,则·=·cos叫做与的数量积(或内积)。规定;向量的投影:cos=R,称为向量在方向上的投影。投影的绝对值称为射影;(3)数量积的几何意义: ·等于的长度与在方向上的投影的乘积(4)向量数量积的性质向量的模与
8、平方的关系:。乘法公式成立;平面向量数量积的运算律交换律成立:;对实数的结合律成立:;分配律成立:。向量的夹角:cos=。当且仅当两个非零向量与同方向时,=00,当且仅当与反方向时=1800,同时与其它任何非零向量之间不谈夹角这一问题(5)两个向量的数量积的坐标运算已知两个向量,则·=。(6)垂直:如果与的夹角为900则称与垂直,记作。两个非零向量垂直的充要条件:·O,平面向量数量积的性质。(7)平面内两点间的距离公式设,则或。如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式) 二、题型举例题型1:平面向量的概念例1给出下列命题:若|,则=;若
9、A,B,C,D是不共线的四点,则是四边形ABCD为平行四边形的充要条件;若=,=,则=;=的充要条件是|=|且/; 若/,/,则/;其中正确的序号是 。解析:不正确两个向量的长度相等,但它们的方向不一定相同;正确; , 且,又 A,B,C,D是不共线的四点, 四边形 ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则,且,因此,。正确; =, ,的长度相等且方向相同;又, ,的长度相等且方向相同, ,的长度相等且方向相同,故。 不正确;当/且方向相反时,即使|=|,也不能得到=,故|=|且/不是=的充要条件,而是必要不充分条件; 不正确;考虑=这种特殊情况; 综上所述,正确命题的序号
10、是。点评:本例主要复习向量的基本概念。向量的基本概念较多,因而容易遗忘。为此,复习时一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想。例2、设为单位向量,(1)若为平面内的某个向量,则=|·(2)若与a0平行,则=|·;(3)若与平行且|=1,则=。上述命题中,假命题个数是( )A0B1C2D3解析:向量是既有大小又有方向的量,与|模相同,但方向不一定相同,故(1)是假命题;若与平行,则与方向有两种情况:一是同向二是反向,反向时=|,故(2)、(3)也是假命题。综上所述,答案选D。点评:向量的概念较多,且容易混淆,故在学习中要分清,理解各概念的
11、实质,注意区分共线向量、平行向量、同向向量等概念。题型2:平面向量的坐标及运算例3已知中,A(2,1),B(3,2),C(3,1),BC边上的高为AD,求。解析:设D(x,y),则得;所以。例4已知点,试用向量方法求直线和(为坐标原点)交点的坐标。解析:设,则因为是与的交点,所以在直线上,也在直线上。即得,由点得,。得方程组,解之得。故直线与的交点的坐标为。题型3平面向量的性质例5平面内给定三个向量,回答下列问题:(1)求满足的实数m,n;(2)若,求实数k;(3)若满足,且,求。解析:(1)由题意得,所以,得。(2),;(3)由题意得,得或。例6已知(1)求;(2)当为何实数时,与平行, 平
12、行时它们是同向还是反向?解析:(1)因为所以则(2),因为与平行,所以即得。此时,则,即此时向量与方向相反。点评:上面两个例子重点解析了平面向量的性质在坐标运算中的体现,重点掌握平面向量的共线的判定以及平面向量模的计算方法。题型4共线向量定理及平面向量基本定理例7平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(1,3),若点C满足,其中、R,且+=1,则点C的轨迹方程为( )A3x+2y11=0 B(x1)2+(y2)2=5C2xy=0 Dx+2y5=0解法一:设,则。由得,于是,先消去,由得。再消去得,所以选取D。解法二:由平面向量共线定理,当,时,A、B、C共线。因此,点C的轨迹
13、为直线AB,由两点式直线方程得;即选D。点评:熟练运用向量的加法、减法、实数与向量的积的坐标运算法则进行运算;两个向量平行的坐标表示;运用向量的坐标表示,使向量的运算完全代数化,将数与形有机的结合。例8(06福建理,11)已知=1,=,=0,点C在AOB内,且AOC=30°,设=m+n(m、nR),则等于( )A B3 C D解析: B; 题型5数量积的概念例9判断下列各命题正确与否:(1);(2);(3)若,则;(4)若,则当且仅当时成立;(5)对任意向量都成立;(6)对任意向量,有。解析:(1)错;(2)对;(3)错;(4)错;(5)错;(6)对。点评:通过该题我们清楚了向量的数
14、乘与数量积之间的区别于联系,重点清楚为零向量,而为零题型6向量的夹角例10、(1)ABC的重心任作一直线分别交AB,AC于点D、E若,则的值为( )(A)4 (B)3 (C)2 (D)1解析:取ABC为正三角形易得3选B评析:本题考查向量的有关知识,如果按常规方法就比较难处理,但是用特殊值的思想就比较容易处理,考查学生灵活处理问题的能力(2)已知向量=(cos,sin),=(cos,sin),且,那么与的夹角的大小是 。(3)已知两单位向量与的夹角为,若,试求与的夹角。(4)| |=1,| |=2,= + ,且,则向量与的夹角为( )A30°B60°C120°D1
15、50°解析:(2);(3)由题意,且与的夹角为,所以,同理可得。而,设为与的夹角,则。(4)C;设所求两向量的夹角为即:所以点评:解决向量的夹角问题时要借助于公式,要掌握向量坐标形式的运算。向量的模的求法和向量间的乘法计算可见一斑。对于这个公式的变形应用应该做到熟练,另外向量垂直(平行)的充要条件必需掌握题型7向量的模例11(1)已知向量与的夹角为,则等于 A5B4C3D1(2)平面向量a与b的夹角为,a(2,0), | b |1,则 | a2b |=A. B.2 C.4 D.12解析 由已知|a|2,|a2b|2a24a·b4b244×2×1×
16、;cos60°412解析:(1)B;(2)B点评:掌握向量数量积的逆运算,以及。例12,(2010全国(2)a,b为平面向量,已知a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于(A) (B) (C) (D)例12已知(3,4),(4,3),求x,y的值使(x+y),且x+y=1。解析:由(3,4),(4,3),有x+y=(3x+4y,4x+3y);又(x+y)(x+y)·3(3x+4y)+4(4x+3y)=0;即25x+24y ;又x+y=1x+y;(x+4y)(x+3y);整理得25x48xy+25y即x(25x+24y)+24xy+25y ;由有24x
17、y+25y ;将变形代入可得:y=±;再代回得:。点评:这里两个条件互相制约,注意体现方程组思想。题型8向量垂直、平行的判定例13已知,按下列条件求实数的值。(1);(2);。解析:(1);(2);。点评:此例展示了向量在坐标形式下的平行、垂直、模的基本运算例14已知,其中。 (1)求证:与互相垂直; (2)若与()的长度相等,求。 解析:(1)因为 所以与互相垂直。 (2), , 所以, , 因为, 所以, 有, 因为,故, 又因为,所以。点评:平面向量与三角函数在“角”之间存在着密切的联系。如果在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性。若根据所给的三角式的结构及向量间的相互关系进行处理。可使解题过程得到简化,从而提高解题的速度。题型9:平面向量在几何
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高端商场货架设计与采购一体化合同范本
- 二零二五年度中小学生辅导班转让合同
- 二零二五年度智能家居租赁合同到期评估及续租通知书
- 2025年度红木家具展会参展与销售合作合同
- 二零二五年度健身房租赁合同示范
- 个人与个体老板用工合同范本完整版
- 2025年度门面转租合同书4篇
- 二零二五年度环保设备安装承包合同书热2篇
- 二零二五版农村土地置换还建房买卖协议3篇
- 二零二五年度高档家具定制与木工班组加工合作协议4篇
- 小儿甲型流感护理查房
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 拆迁评估机构选定方案
- 趣味知识问答100道
- 钢管竖向承载力表
- 2024年新北师大版八年级上册物理全册教学课件(新版教材)
- 人教版数学四年级下册核心素养目标全册教学设计
- JJG 692-2010无创自动测量血压计
- 三年级下册口算天天100题(A4打印版)
- CSSD职业暴露与防护
- 饮料对人体的危害1
评论
0/150
提交评论