版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.初二数学知识点:公式对于初中学生朋友,学习是一个循序渐进的过程,需要日积月累。查字典数学网提供了初二数学知识点,希望对大家学习有所帮助。一运用公式法:我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=a+ba-ba2+2ab+b2=a+b2a2-2ab+b2=a-b2假如把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。二平方差公式1.平方差公式1式子: a2-b2=a+ba-b2语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。三因式分解1.因式分解时,各项假如有公因式应先提
2、公因式,再进一步分解。2.因式分解,必须进展到每一个多项式因式不能再分解为止。四完全平方公式1把乘法公式a+b2=a2+2ab+b2 和 a-b2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =a+b2a2-2ab+b2 =a-b2这就是说,两个数的平方和,加上或者减去这两个数的积的2倍,等于这两个数的和或者差的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。2完全平方式的形式和特点项数:三项有两项是两个数的的平方和,这两项的符号一样。有一项为哪一项这两个数的积的两倍。3当多项式中有公因式时,应该先提出公因式,再用公式分解。4完全
3、平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。5分解因式,必须分解到每一个多项式因式都不能再分解为止。五分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.假如我们把它分成两组am+ an和bm+ bn,这两组能分别用提取公因式的方法分别分解因式.原式=am +an+bm+ bn=am+ n+bm +n做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式m+n,因此还能继续分解,所以原式=am +an+bm+ bn=am+ n+bm+ n=m +
4、n?a +b.这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好一样,那么这个多项式就可以用分组分解法来分解因式.六提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的构造特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进展适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +p+qx+pq=x+qx+p进展因式分解要注意:1.必须先将常
5、数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的屡次尝试,一般步骤: 列出常数项分解成两个因数的积各种可能情况;尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成x+qx+p的形式.七分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进展约分的目的是要把这个分式化为最简分式.3.假如分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.假如分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法那么,如
6、x-y=-y-x,x-y2=y-x2,x-y3=-y-x3.5.分式的分子或分母带符号的n次方,可按分式符号法那么,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.八分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是根据分式的根本性质进展变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子那
7、么乘出来写成多项式,为进一步运算作准备.4.通分的根据:分式的根本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法那么是:同分母分式相加减,分母不变,把分子相加减。同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8.异分母的分式加减法法那么:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.9.作为最后结果,假如是分式那么应该是最简分式.九含有字母系数的
8、一元一次方程1.含有字母系数的一元一次方程引例:一数的a倍a0等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=ba0在这个方程中,x是未知数,a和b是用字母表示的数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法一样,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。“教书先生恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生概念并非源于教书,最初出现的“先生一词
9、也并非有传授知识那般的含义。?孟子?中的“先生何为出此言也?;?论语?中的“有酒食,先生馔;?国策?中的“先生坐,何至于此?等等,均指“先生为父兄或有学问、有德行的长辈。其实?国策?中本身就有“先生长者,有德之称的说法。可见“先生之原意非真正的“老师之意,倒是与当今“先生的称呼更接近。看来,“先生之根源含义在于礼貌和尊称,并非具学问者的专称。称“老师为“先生的记载,首见于?礼记?曲礼?,有“从于先生,不越礼而与人言,其中之“先生意为“年长、资深之传授知识者,与老师、老师之意根本一致。10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.11.对于整式和
10、分式之间的加减运算,那么把整式看成一个整体,即看成是分母为1的分式,以便通分.“教书先生恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生概念并非源于教书,最初出现的“先生一词也并非有传授知识那般的含义。?孟子?中的“先生何为出此言也?;?论语?中的“有酒食,先生馔;?国策?中的“先生坐,何至于此?等等,均指“先生为父兄或有学问、有德行的长辈。其实?国策?中本身就有“先生长者,有德之称的说法。可见“先生之原意非真正的“老师之意,倒是与当今“先生的称呼更接近。看来,“先生之根源含义在于礼貌和尊称,并非
11、具学问者的专称。称“老师为“先生的记载,首见于?礼记?曲礼?,有“从于先生,不越礼而与人言,其中之“先生意为“年长、资深之传授知识者,与老师、老师之意根本一致。12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.要练说,先练胆。说话胆小是幼儿语言开展的障碍。不少幼儿当众说话时显得害怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学形式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的时机,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国台式化学发光免疫分析仪行业头部企业市场占有率及排名调研报告
- 2025-2030全球棱镜胶带片行业调研及趋势分析报告
- 2025-2030全球建筑垃圾分类设备行业调研及趋势分析报告
- 金融中介合同范本
- 企业宣传片制作合同
- 柴油发电机租赁合同年
- 采购合同的标准年
- 家具代理销售合同范本
- 抖音直播服务合同模板下载
- 饮用水供水合同协议书
- 课题申报参考:流视角下社区生活圈的适老化评价与空间优化研究-以沈阳市为例
- 《openEuler操作系统》考试复习题库(含答案)
- 项目重点难点分析及解决措施
- 挑战杯-申报书范本
- 北师大版五年级上册数学期末测试卷及答案共5套
- 2024-2025学年人教版生物八年级上册期末综合测试卷
- 2025年九省联考新高考 语文试卷(含答案解析)
- 第1课《春》公开课一等奖创新教案设计 统编版语文七年级上册
- 全过程工程咨询投标方案(技术方案)
- 心理健康教育学情分析报告
- 安宫牛黄丸的培训
评论
0/150
提交评论