对“几何直观”概念的几点辨析_第1页
对“几何直观”概念的几点辨析_第2页
对“几何直观”概念的几点辨析_第3页
对“几何直观”概念的几点辨析_第4页
对“几何直观”概念的几点辨析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、对“几何直观”概念的几点辨析浙江省海盐县实验小学教育集团 顾志能在义务教育数学课程标准(2011年版)(以下简称标准)中,“几何直观”是课程目标的核心概念。标准提出:“在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想要特别注重发展学生的应用意识和创新意识。”而在义务教育数学课程标准(实验稿)中,“几何直观”却并不是课程目标的核心概念,这预示着,几何直观将成为数学教学研究中的一个新的关注点。在这个时候,理解几何直观的含义,了解与相关概念的区别,对小学数学教师而言,就显得非常必要和迫切。为此,笔者从自己的困惑出发,结合所看到的相关资料,

2、谈一些粗浅的认识,供老师们讨论。一、几何直观的含义标准:“几何直观主要是指利用图形描述和分析数学问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”著名数学家徐利治先生也有过对几何直观的描述:“几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知。”1也有学者这么描述:“几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态。”2从这些描述中,我们可有以下的认识:几何直观是一种运用图形认识事物的能力3,或者说一种解决数学问题的思维方式。

3、这种能力可外化成为一种在解决某些数学问题时的方法,这种方法区别于其它方法的典型特征在于它是以几何图形为工具的即“几何”两字的意义。用这种方法解决问题,不是运用几何中常用的论证方法,而是通过经验、观察、想象等途径,直观地感知问题的结果或方向即“直观”两字的意义。如三年级学生要学习同分子分数大小比较,这个知识相对比较抽象,学生较难理解。此时,学生如果能主动地采取画出(或想到)以下几何图形(图1)的方式,然后通过观察(或想象)图形的特点及联系,直观地解决问题,并理解了“分子相同的分数,分母小的反而大”的原理。学生如果具备这种解决问题的思维方式,掌握这样的方法,我们就可说学生有几何直观的能力。图1二、

4、几何直观与数形结合在理解几何直观意义的过程中,老师们最大的困惑就是难以将几何直观与数形结合清晰地区别开来。比如说,上文所举的分数大小比较时用几何图形来思考的例子,在以前,我们一直是视为这是用数形结合思想来解决问题的典型。而如今,这样的观念要调整,数形结合变成了几何直观,这就难免让人疑惑:数形结合与几何直观,区别到底在哪里?近期,在笔者参与的或了解到的一些以几何直观为话题的教研活动,都呈现出了一个共同之处:教师呈现的所谓几何直观的例子,都是以前所讲的数形结合的例子。教师们更有这样的认识:几何直观,无非是数形结合的“同名词”,或者可能只是数形结合的“升级版”而已。教师们对此的不解,甚至于表现为“用

5、到了几何图形,就是体现了几何直观”这样的想法。当然,笔者所言的这些教研活动,大多是很基层的,或许只是代表了部分一线普通教师的认识。但是,这足以说明对数形结合与几何直观作出区分是非常必要的。什么是数形结合?数形结合,是一种重要的数学思想方法,也是解决数学问题的有效策略。它是指解决数学问题时,可借助于“形”的直观来理解抽象的“数”,或反过来运用“数”与“式”的描述来刻画“形”的特征。4数形结合最基本的形式为“以形助数”和“以数解形”。如小学数学中的分数应用题,我们运用画线段图来分析其中的数量关系,这样的情况就可叫做“以形助数”。而我们在直角坐标系中,用数对来描述图形的变化(如平移、旋转),或计算两

6、点之间的距离等,这样的情况则可叫做“以数解形”。“以形助数”,是在发挥“形”所具有的直观特点,来降低“数”的抽象度;而“以数解形”,则是在利用“数”的精确性,来准确刻画“形”,让“形”得以量化。如此,直观与抽象相互配合,取长补短,从而顺利、有效地解决问题。5如果用一个不太恰当的比喻来形容数形结合的特点,它就好比是架设在“数”与“形”之间的一条双向通道,起着由此及彼、相互促进的作用。我们再来看几何直观。从几何直观的概念可知,它是指“利用图形描述和分析数学问题”。那么,我们不得不产生这样的理解:几何直观就是用“形”来解决数学问题。尽管这个“数学问题”可能并不仅仅是“数”,可以是“形”或者其它数学问

7、题。但不管怎样,如果与数形结合做个对比,那么它就只能算是一条由“形”出发的单向通道而已。在小学数学中,因为“以数解形”的例子极少,所以就造成了老师们谈及数形结合时,都是举了单向的由“形”出发解决“数”的例子。如此一来,我们自然就会遇到这样的情况:数形结合的例子是“以形助数”,几何直观的例子也是“以形助数”,在小学中,两者所举的例子似乎是一样的。或许就是因为这样的原因,曾有专家提出:在小学数学中,不必区分数形结合和几何直观。这样的观点,笔者觉得也不无道理。 当然,尽管有这样的观点,但并不是说几何直观就是数形结合的下位概念。笔者觉得,如果我们要将几何直观与“以形助数”作区别的话,那就必须要抛开表面

8、的相似,而去找到两者关键的区别。在笔者看来,几何直观的内涵最重要之处是“直接感知”(即徐利治先生所下定义中的用词)。具体地说,数形结合的“以形助数”,的确是借助于“形”来分析“数”,但是,这个“形”需要我们相对规范地得出,解释的过程更是要借助于“形”的细节严谨地开展,是带有初步的演绎推理的成分(已类似于证明)。而几何直观,也是在用“形”,但这个“形”,可以是眼睛见到的,可以是画出的,也可以是大脑想到的。更重要的是,它是要依托“形”直接地产生对数量关系及事物其它本质属性的感知,即“未经充分逻辑推理而对事物本质的一种直接洞察,直接把握对象的全貌和对本质的认识。6”直白地讲,几何直观是一种立足于“形

9、”却带有思维跳跃性的解决数学问题的方式,它是基于表象的、在人头脑中进行的“快捷推理”。如前文所举的分数大小比较的例子,当学生头脑中想到“一个圆平均分成四份,其中的一份与平均分成五份中的一份相比”,这时,生活经验首先介入,然后支撑表象马上建立,于是“大于”的结果直接就在学生头脑中形成了。这明显与用图形来规范严谨地进行说理是不一样的。因此,几何直观与数形结合虽有一定联系,却并非同一意义,这往往为很多人所混淆。也正因为站在这样的角度,笔者觉得,标准对几何直观的文字描述还不是最理想,至少是很难让人将几何直观与数形结合中的“以形助数”区别开来。当然,这也许是笔者理解不够造成的。三、几何直观与直观几何谈起

10、几何直观,我们又不得不提及大家经常听到的另一个名词直观几何。那么,几何直观和直观几何,这两者又是怎么回事呢?我们在初中阶段都经历过这样的几何学习从定义、公设、公理或已证的命题出发,通过一系列严谨的步骤、严密的推理,完成对某个命题的证明。这样的几何就是论证几何,或称之为证明几何。论证几何有利于培养人的逻辑思维能力,提高人的理性思维水平,欧几里得的几何原本就是一个典范,它为数学的发展和人类的进步做出了卓越的贡献。但是,人除了逻辑思维能力之外,还需要形象思维能力。而在几何的学习中,如果能“从直观形象这一侧面”(希尔伯特语),通过观察、想象、操作等手段去认识图形、发现规律或解决问题,那么,人的形象思维

11、能力就会得到良好发展,发现能力和创新精神也会得到有效培养。这种“通过图形进行观察,根据直观认识来研究图形的性质和相关问题,以这种方法为主要手段的几何学叫直观几何。7”在小学数学中,由于学生的年龄特点和认知特点,他们学习几何需要更多地从经验入手,通过观察比较,或通过动手操作,从而获得对图形的认识,并发展空间观念。举些例子来说明:如,在学习两直线相交的相关知识时,我们引导学生通过观察、比较,他们就会得出对顶角(学生叫对角)相等的结论(图2)。倘若学生有疑义,则可让他们借助工具来测量,那就一定会得出这样的结论。再如,在学习平行四边形面积时,我们也是让学生通过观察,想象到沿着平行四边形的高剪下一个三角

12、形,拼到另一侧就可转化为一个长方形(图3),然后进行对比,找到两者之间的联系,从而得出面积计算公式。这种以观察、操作等为手段得出结论的几何学习方法,就是直观几何。在小学中,无论是几何图形的特征、性质还是求积的公式,基本上都是通过这样的直观方法得到的。(在欧氏几何中,这都是需要证明的)因此,“小学几何课程内容的性质实质上是直观几何、实验几何。8”图2图3 也正是因为直观几何具有诸多的论证几何所不具备的教育价值,因此,也产生了以“直观”为理念来设计几何课程的尝试,并收到显著效果,如俄罗斯的中学几何教材直观几何就是典范。从上可见,直观几何和几何直观是两个不同的概念,直观几何是一种几何学习的方法,而几

13、何直观则是一种解决数学问题的思维方式,是一种能力。当然,尽管概念涵义不同,但它们之间却并非毫无关联。比如,经历直观几何的学习,必定能为几何直观能力的形成打下基础。因为学生通过直观方式学习几何的过程,就一定是一个积累几何活动经验、发展几何直觉的过程。而这种不断增强的几何经验、直觉,就会积淀并转化为学生将来用几何直观方法解决问题时可调用的丰富资源。四、几何直观与空间观念对几何直观的论述,标准中还出现在课程总体目标中的“数学思考”部分建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。这样的表述,在向我们传递着几何直观是一种能力的同时,更吸引着我们去关注句中出现的另一个

14、熟悉的名词空间观念。之所以要拿出它们两者来进行讨论,是因为在我们的传统认识中,空间观念也是一种能力,而且这种能力的形成过程也是与几何图形紧密相关的。更重要的是,在实验稿的课标中,“能运用图形形象地描述问题,利用直观来进行思考”,是作为空间观念的特征来描述的。而在标准中,这句话略作修改竟变成了几何直观的定义几何直观主要是指利用图形描述和分析问题。于是,这不禁让我们深思:几何直观和空间观念,它们到底存在怎样的关联呢?先得说空间观念。所谓空间观念,可以看成是物体和图形的形状、大小、位置、关系等在人脑中的表象(周玉仁语)。在标准中,是从四个方面来具体描述空间观念特征的。发展空间观念的有效途径,经典理论

15、认为,那就是在几何学习时多用经验、观察、操作、想象、交流等手段。以这样的论述对比几何直观的概念,我们可以有两点认识:一,空间观念,是几何教学领域中的一个专用名词,是几何教学的一个重要目标。而几何直观,却并非是限于几何领域内的一个名词,它尽管是借助了几何,但它却跳出了几何,适用到了更宽广的领域。二,相对而言,空间观念更多地体现为教学的结果,目标性特征比较明显,而几何直观作为一种思维的方式和能力,过程性特征更加凸显。也许正是两者具有这些差异,标准就从实验稿课标对空间观念的描述中剥离出一项,提升成为另一个核心的概念几何直观。(当然,将两者做为两个能力目标区别看待,并不是新生事物,2003年颁布的普通

16、高中数学课程标准(实验稿)早已这样提出。)同时,我们不难想到,由于共同元素“几何”的存在,两者之间想要毫无瓜葛那也是不现实的。明显地,要清晰表象、发展空间观念,宜借助图形,采用观察、想象等直观手段,但这样的过程中就已经隐含了运用几何直观方法的元素。反之,在运用几何直观方法思考问题、解决问题的时候,观察、想象等手段也必定相伴而行,空间观念自然也在潜移默化地得到发展。因此,如果将它们两者做个比喻的话,是否有“同饮一江水,风情两相宜”的意境呢?五、题外话尽管笔者以较长的篇幅谈了对几何直观的粗浅思考,但事实上,对于几何直观这个标准中新提的名词,笔者和大多数小学数学教师一样,除了文中谈及的几个话题之外,

17、还有很多的不明之处、疑惑之处。如,小学数学教材中承载几何直观能力培养的内容具体有哪些?我们如何教学,才可以说是正确地展现了几何直观的方法?培养学生的几何直观能力到底有哪些可借鉴的策略?再如,对于小学中的几何直观,标准只在第二学段提了一句“感受几何直观的作用”(在第二学段“学段目标”中的“数学思考”部分)。而“感受”是一个描述过程目标的行为动词,这是否意味着,小学阶段的几何直观,只需要感受即可?这是否就是史宁中教授所言的“空间观念主要是对小学来说的,几何直观是对初中来说的9”含义呢?等等类似的疑问还有不少,但在我们见到的标准中,对这方面的阐述却很少,涉及到小学阶段的具体论述和相应案例更是没有出现。目前我们所看到的一些解读材料,也更多地是在以中学的教学内容为例说事。这对小学教师的学习、实践而言,都造成了一定的障碍。为此,笔者和老师们一样,有一种强烈的愿望:当一个新的名词(教学要求)提出来的时候,我们希望尽早见到权威部门对此作非常详尽地解读,而不是由一线教师自己作茫然地思考或资料的找寻。参考文献:1 徐利治.谈谈我的一些数学治学经验J.数学通报,2000(5)2 蒋文蔚.几何直观思维在科学研究及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论