下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、渗透数学思想方法 培养数学思维能力厦门市同安区阳翟小学 林亚钟【内容摘要】数学的思想方法是数学的灵魂和精髓。我们在小学数学教学中,应做教学有心人,有意渗透,有意点拨,使学生在学习中体会到数学思想方法的美妙,感受到学习的乐趣,使学生的数学思维能力得到切实有效地发展,使学生的学习实现由“学会”到“会学”的转变,从而使其自然而然地形成系统、完整、准确的数学思想和方法。【关键词】有意渗透 化归思想 数形结合思想 数学模型思想 培养思维能力数学课程标准总体目标第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识,以及基本的数学思想方法和必要的应用技能”。知识和技能是数学学习的基
2、础,而数学的思想方法则是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其他学科的学习,乃至学生的终身发展有十分重要的意义。古人云:“授人以鱼,只供一饭之需;授人以渔,则一生受用无穷。”日本著名数学教育家米山国藏说过:“许多在学校学的数学知识,如果毕业后进入社会没有什么机会去用的话,不到一年就忘掉了。然而,不管他们从事什么业务工作,惟有深深铭刻在头脑中的数学精神、数学思想方法、研究方法、推理方法和着眼点,却随时随地的发生作用,使他们终身受益”。 在数学学习中,学生要学会的不是一道题,而是一种分析的方法;要学会的不是一类题,而是一种思想;要学会的并不是怎样会
3、做这道题,而是怎样去分析、理解这类题,使之能力真正得到提高。因此,在数学学习活动中,应让学生通过观察、操作、实验、猜测、推理与交流等活动,初步感受数学思想方法的奇妙与作用,受到数学思维的训练,逐步形成有序地、严密地思考问题的意识。一、化归的思想方法:1等量代换。 教学平行四边形面积的计算时,课前2分钟我播放了“曹冲称象”的视频动画,引导学生明白这个故事给我们一个启发:某些数学问题若直接考虑有困难,可以把原有的条件或问题用等价的量去代换,从而找到解题的线索。教学开始时,我通过创设“帮老师计算平行四边形停车位的面积”这一生活情境,让学生先猜想,再通过动手剪、拼等活动,把平行四边形转化成长方形;然后
4、引导学生观察、比较拼出来的长方形的长、宽分别与平行四边形的关系,使学生理解平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽,由此引导学生由长方形的面积=长×宽推导出平行四边形的面积底×高。2化繁为简。杨振宁先生曾经说过:“过去的学习方法是人家指出路你去走,新的学习方法是要自己找路去走。”为使学生对“简化”思想和“转化”策略体验得更深刻,在教学植树问题时,我把教材原题的“100米”改为1000米同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽。一共需要多少棵树? 。我让学生先进行猜想:一共需要多少棵树呢?然后让学生想想有没有比较简单的方法来验证自己
5、的答案?大部分学生说可用画线段图的方法,但一个学生提出质疑:“1000米要画到什么时候?”这样做更能突出“繁”,让生感受到“繁”,才有“化繁”的观念。待猜想答案呈现不一致后,引导学生得出需要取小单位量来研究,可以先从30米开始研究,这样让学生领悟到“解决复杂问题从简单例子入手”的方法,体验转化思想。在数学教学中,我们还可以充分挖掘教材,有意识地进行化归思想的渗透,如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、
6、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。在教学中,如果我们不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。二、数形结合的思想方法。华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”教学时,可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。例如在教学乘法分配律时,如何让学生理解这一公式呢?突破这个难点的关键就是要处理好数学知识的抽象性与小学生思维的具体形象性之间的矛盾。在教学
7、中,我用数学结合的方式帮助学生理解。教学开始时,我在黑板上画出了下图,5厘米 3厘米2厘米画完图后我让学生求图中大长方形的面积。有学生想到:(5+3)×2=8×2=16(平方厘米)我接着问:“ 还有其他的方法吗?”有学生想到:5×2+3×2 =10+6=16(平方厘米)这时,我启发学生思考:用两种方法求同一个大长方形的面积,结果相同,这时我们可以把这两个算式合并起来,该怎么写呢?学生就说(5+3)×25×2+3×2,这就自然而然地引出了乘法分配律。通过渗透“数形结合”的数学思想方法,由数想形、以形辅数,使抽象的数学定律直观化
8、、形象化 、简单化,为具体形象思维向抽象逻辑思维过渡搭建了桥梁。三、数学模型思想方法。所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。如在植树问题教学中,让学生领悟到把问题简单化是远远不够的,需要从简单例子中探寻出对解决复杂问题有效的“规律”,再用发现的规律帮助解决问题。因此在教学中,我还让学生回忆刚才我们遇到两端都要种的植树问题,是通过怎样的办法,最后成功解决的?引导学生理出“复杂问题简单问题发现规律解决问题”的解决思路。这发现规律的过程,实质
9、上是学生的推理过程。从个别的、简单的几个例子出发,逐步过渡到复杂的、更一般的情境中,是数学常用的推理方法,渗透了归纳的思想方法,使学生自主完成了对“复杂问题简单问题发现规律解决问题”的解题策略的构建。在这个过程中,学生对原有的解题策略进行了一次全新的扩充。然后收集数据,将研究的结果绘制成表,发现了植树问题(两端种的模型,即棵数=间隔数+1。这样,不仅发展了学生的策略性知识,同时学生的思维经历了“一波三折”的过程,加深了对解题方法的理解。恰如杜甫的春夜喜雨:“好雨知时节,当春乃发生 。随风潜入夜,润物细无声 。”在小学数学中有意识地向学生渗透一些数学思想方法,重视数学思想方法的训练,有利于培养和发展学生的认知能力,有利于构建和完善学生的认知结构,有利于开发和发挥学生的大脑潜能,有利于培养学生的审美情趣。因此我们在小学数学教学中,应做教学有心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院职工宿舍租赁协议范例
- 化工原料投标诚信承诺书模板
- 2024年标准版和平解除婚姻关系协议版B版
- 2024停车场设施租赁与广告合作经营合同3篇
- 2024版保密安全协议及配套服务合同3篇
- 2024年度商铺租赁法律咨询委托合同3篇
- 2024年度光纤通信设备采购合同3篇
- 科研与学术活动计划
- 2025单位用工聘用合同模板
- 2024年度专利实施许可合同标的为专利技术实施许可2篇
- 2024年资格考试-国际焊接工程师(IWE)考试近5年真题附答案
- 2023-2024学年云南省昆明市呈贡区九年级(上)期末物理试卷
- 知识点默写单-2024-2025学年统编版道德与法治九年级上册
- RB/T 224-2023国产化检测仪器设备验证评价指南原子吸收分光光度计
- 心房颤动诊断和治疗中国指南(2023) 解读
- 山东某食品有限公司突发环境事件应急预案
- 胃、肠内镜的清洗消毒与保养课件
- 神经内科并发症
- 2024年省绵阳市招才引智活动面向全国引进高层次和急需紧缺人才6385人高频500题难、易错点模拟试题附带答案详解
- 地形图测绘报告
- 3.2 参与民主生活 课件-2024-2025学年统编版道德与法治九年级上册
评论
0/150
提交评论