人教版八年级上数学整式的乘法与因式分解_第1页
人教版八年级上数学整式的乘法与因式分解_第2页
人教版八年级上数学整式的乘法与因式分解_第3页
人教版八年级上数学整式的乘法与因式分解_第4页
人教版八年级上数学整式的乘法与因式分解_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第14章 整式的乘法与因式分解 本章知识导引本章知识导引整式整式整式的概念整式的概念单项式单项式多项式多项式系数系数次数次数项项次数次数整式的运算整式的运算整式乘法整式乘法互逆运互逆运算算整式除法整式除法因式分解因式分解概念概念方法方法同类项同类项合并同类项合并同类项整式加减整式加减幂的运算幂的运算单项式乘单项式单项式乘单项式单项式乘多项式单项式乘多项式多项式乘多项式多项式乘多项式乘法公式乘法公式提公因式法提公因式法公式珐公式珐互逆变形互逆变形知识要点知识要点:一、幂的一、幂的4个运算性质个运算性质二、整式的乘、除二、整式的乘、除三、乘法公式三、乘法公式四、因式分解四、因式分解考查知识点:(当

2、考查知识点:(当m,n是正整数时)是正整数时)1、同底数幂的乘法:、同底数幂的乘法:am an = am+n 2、同底数幂的除法:、同底数幂的除法:am an = am-n ; a a0 0=1(a0)=1(a0)3、幂的乘方、幂的乘方: (am )n = amn 4、积的乘方、积的乘方: (ab)n = anbn 解此类题应注意明确法则及各自运算的特点,避免混淆解此类题应注意明确法则及各自运算的特点,避免混淆知识点一知识点一例2 计算:(-2x2)3=_本题中积的乘方运算是通过改变运算顺序进行的,即将各个因式的积的乘方转化为各个因式的乘方的积,前者先求积后乘方,后者则先乘方再求积例3 计算:

3、 (-1)2009+0= 零指数的考查常常与实数的运算结合在一起,是易错点 -8x602.若若10 x=5,10y=4,求求102x+3y-1 的值的值.3.计算:计算:0.251000(-2)2000注意点:注意点:(1)指数:加减)指数:加减乘除乘除转化转化(2)指数:乘法)指数:乘法幂的乘方幂的乘方转化转化(3)底数:不同底数)底数:不同底数同底数同底数转化转化1.(x-3)x+2=1x+2=0,x=-2原式原式=102x103y10=(10 x)2(10y)310 0.5(-2)2000=a0=1(a0)知识点知识点2 2 整式的乘除法整式的乘除法相关知识:单项式乘以单项式,单项式乘以

4、单项式,单项式乘以多项式,单项式乘以多项式,多项式乘以多项式,多项式乘以多项式,单项式除以单项式,单项式除以单项式,多项式除以单项式多项式除以单项式常见题型有填空题、选择题和计算与化简求值等低中档题例(1)计算: 2x3(-3x)2=_ (2)计算: 6m3(-3m2)=_. 单项式的乘除法中若有乘方、乘除法等混合运算,应按“先算乘方,再算乘除法”的顺序进行在进行单项式的乘除法运算时,可先确定结果(积或商)的符号,再按法则进行计算18x5-2m计算:计算:(3x+4)(3x-4)-(2x+3)(3x-2)(1-x)(1+x)(1+x2)(1-x4)(x+4y-6z)(x-4y+6z)(x-2y

5、+3z)2平方差公式:平方差公式:(a+b)(a-b)=a2-b2完全平方公式:完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2三数和的平方公式:三数和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc知识点三知识点三(3x+4)(3x-4)-(2x+3)(3x-2) =9x2-16-(6x2-4x+9x-6) =9x2-16-6x2+4x-9x+6 =3x2-5x-10 =(1-x2)(1+x2)(1+x4) =(1-x4)(1+x4) =1-x8(1-x)(1+x)(1+x2)(1-x4)(x+4y-6z)(x-4y+6z) =x+(4y

6、-6z)x-(4y-6z) =x2-(4y-6z)2=x2-(16y2-48yz+36z2)=x2-16y2+48yz-36z2(x-2y+3z)2 =(x-2y)+3z2=(x-2y)2 +6z(x-2y)+9z2 =x2-4xy+4y2+6zx-12yz+9z2=x2+4y2+9z2-4xy+6zx-12yz三数和的平方公式:三数和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc计算计算:(1)98102 (2)2992 (3) 20062-20052007 (1)98102 =(100-2)(100+2) =1002-22 =9996 (2)2992 =(300-

7、1)2=3002-23001+1=90401 (3) 20062-20052007 =20062-(2006-1)(2006+1) =20062-(20062-12) =20062-20062 +1 =1 1 、已知已知a+b=5 ,ab= -2, 求(求(1) a2+b2 (2)a-ba2+b2=(a+b)2-2ab(a-b)2=(a+b)2-4ab2、已知、已知a2-3a+1=0,求(,求(1) (2)221aa 1aa3、已知、已知 求求x2-2x-3的值的值31x 1、因式分解意义:、因式分解意义: 和和积积2、因式分解方法:、因式分解方法:一提一提 二套二套 三看三看二项式:二项式:

8、 套平方差套平方差三项式:三项式: 套完全平方与十相乘法套完全平方与十相乘法看:看: 看是否分解完看是否分解完3、因式分解应用:、因式分解应用:提:提:提公因式提公因式提负号提负号套套知识点四知识点四1.从左到右变形是因式分解正确的是从左到右变形是因式分解正确的是( )A.x2-8=(x+3)(x-3)+1B.(x+2y)2=x2+4xy+4y2C.y2(x-5)-y(5-x)=(x-5)(y2+y)D.)21(21a241-a221-a222a)()(D2.下列各式是完全平方式的有下列各式是完全平方式的有( ) 422 xx412 xx222yxyx2232-91yxyxA A. B.C.

9、D.D1+把下列各式分解因式:把下列各式分解因式:1. x 5 - 16x 2. 4a 2+4ab- b 23. m 2(m- 2) - 4m(2- m) 4. 4a 2- 16(a - 2) 2 (1)提公因式法)提公因式法 (2)套用公式法)套用公式法二项式二项式:平方差平方差三项式三项式:完全平方完全平方1、多项式、多项式x2-4x+4、x2-4的公因式是的公因式是_2、已知、已知x2-2mx+16 是完全平方式,则是完全平方式,则m=_5、如果、如果(2a+2b+1)(2a+2b-1)=63,那么那么a+b=_3、已知、已知x2-8x+m是完全平方式,则是完全平方式,则m=_4、已知、

10、已知x2-8x+m2是完全平方式,则是完全平方式,则m=_x-241644-mx86、如果、如果(a2 +b2 )(a2 +b2 -1)=20,那么那么a2 +b2 =_5-4(不合题意不合题意) 1、计算、计算(-2)2008+(-2)2009 2、计算:、计算:20082009)21()21( 3、计算、计算: 2005+20052-200624、计算、计算: 3992+399观察观察:;181-322请你用正整数请你用正整数n的等式表示你发现的的等式表示你发现的规律规律 .nnn8) 12() 12(22正整数正整数n;283-522;385-722;487-922观察下列各组数观察下列各组数,;1-2312请用字母表示它们的规律请用字母表示它们的规律;1-4532;1-6752;1-897214) 12)(12(2nnnn是正整数是正整数设设 (n为大于为大于0的自然数的自然数).(1) 探究探究an 是否为是否为8的倍数,并用文字语言表述你的倍数,并用文字语言表述你所获得的结论;所获得的结论;(2) 若若一一个数的算术平方根是一个自然数,则称这个数的算术平方根是一个自然数,则称这个数是个数是“完全平方数完全平方数”. 试找出试找出a1 ,a2 ,a n,这一列数中从小到大排列的前这一列数中从小到大排列的前4个完全平方数,个完全平方数,并指出当并指出当n满足什么条件时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论