




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.函数的单调性:在某个区间(a,b)内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.如果,那么函数在这个区间上是常数函数.注:函数在(a,b)内单调递增,则,是在(a,b)内单调递增的充分不必要条件.2.函数的极值:曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正一般地,当函数 在点处连续时,判断 是极大(小)值的方法是:(1)如果在附近的左侧 ,右侧,那么是极大值(2)如果在附近的左侧 ,右侧,那么 是极小值注:导数为0的点不一定是极值点知识点一:导数与函数的单调性方法归纳:在某个区间(a
2、,b)内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.如果,那么函数在这个区间上是常数函数.注:函数在(a,b)内单调递增,则,是在(a,b)内单调递增的充分不必要条件.例1】(B类)已知函数的图象过点,且在点处的切线方程为. ()求函数的解析式; ()求函数的单调区间.【解题思路】注意切点既在切线上,又原曲线上.函数在区间上递增可得:;函数在区间上递减可得:.【例2】(A类)若在区间1,1上单调递增,求的取值范围.【解题思路】利用函数在区间上递增可得:;函数在区间上递减可得:.得出恒成立的条件,再利用处理不等式恒成立的方法获解【例3】(B类)已知函数,设()求函数
3、的单调区间;()若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值【课堂练习】1.(B) 已知函数的图像经过点,曲线在点处的切线恰好与直线垂直. ()求实数的值;()若函数在区间上单调递增,求的取值范围.2(B类)设函数,在其图象上一点P(x,y)处的切线的斜率记为 (1)若方程的表达式; (2)若的最小值3.(A类)已知函数 ,当 时,讨论函数 的单调性.例一解析】()由的图象经过,知, 所以.所以. 由在处的切线方程是,知,即,. 所以 即 解得. 故所求的解析式是. ()因为, 令,即,解得 ,. 当或时, 当时, 故在内是增函数,在内是减函数,在内是增函数. 例二【解析】又
4、在区间1,1上单调递增在1,1上恒成立 即在 1,1时恒成立. 故的取值范围为例三解析】(I),由,在上单调递增. 由,在上单调递减.的单调递减区间为,单调递增区间为.(II),恒成立当时,取得最大值.,amin=课堂练习;1,【解析】()的图象经过点 , 由已知条件知 即 解得:()由()知,令则或 函数在区间上单调递增 或 即或2,解析】(1)根据导数的几何意义知由已知-2、4是方程的两个实根由韦达定理, (2)在区间1,3上是单调递减函数,所以在1,3区间上恒有其中点(2,3)距离原点最近, 所以当有最小值13 3,【解析】,(1)当时,若为增函数;为减函数;为增函数(2)当时,为增函数
5、;为减函数;为增函数知识点二: 导数与函数的极值最值方法归纳:1.求函数的极值的步骤:(1)确定函数的定义域,求导数 .(2)求方程的根.(3)用函数的导数为0的点,顺次将函数的定义域分成若干小开区间,并列成表格.检查在方程根左右的值的符号,如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果左右不改变符号,那么在这个根处无极值.2.求函数在上最值的步骤:(1)求出在上的极值. (2)求出端点函数值. (3)比较极值和端点值,确定最大值或最小值.注:可导函数在处取得极值是的充分不必要条件.【例4】(A类)若函数在处取得极值,则 .【解题思路】若在附近的左侧,右侧
6、,且,那么是的极大值;若在附近的左侧,右侧,且,那么是的极小值.【解析】因为可导,且,所以,解得.验证当时, 函数在处取得极大值.【注】 若是可导函数,注意是为函数极值点的必要条件.要确定极值点还需在左右判断单调性.例5】(B类)已知函数,(I)求的单调区间;(II)求在区间上的最小值.【解析】(I),令;所以在上递减,在上递增;(II)当时,函数在区间上递增,所以;当即时,由(I)知,函数在区间上递减,上递增,所以;当时,函数在区间上递减,所以.【例6】(B类)设是函数的两个极值点.(1)试确定常数a和b的值;(2)试判断是函数的极大值点还是极小值点,并求相应极值.【解析】(1)由已知得: (2)变化时.的变化情况如表:(0,1)1(1,2)20+0极小值极大值故在处,函数取极小值;在处,函数取得极大值4.(A类)设.若在上存在单调递增区间,求的取值范围.5.(B类)设,(1)求的单调区间和最小值; (2)讨论与的大小关系;6.(C类)已知函数()证明:曲线.课堂练习;4,【解析】在上存在单调递增区间,即存在某个子区间 使得.由,在区间上单调递减,则只需即可.由解得,所以,当时,在上存在单调递增区间5,解】(1)由题设知,令0得=1,当(0,1)时,0,是减函数,故(0,1)是的单调减区间.当(1,+)时,0,是增函数,故(1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年自治区科技厅直属事业单位引进考试真题
- 修缮采购协议合同范本
- 兼职辅导老师合同范例
- 新能源汽车动力蓄电池系统构造与检修 项目三-课后习题带答案
- 劳务分包用工合同范本
- 公司销售渠道合同范本
- 农民玉米出售合同范本
- 2024年杭州银行招聘考试真题
- 2024年江西省人才服务有限公司招聘笔试真题
- 企业雇佣货车合同范本
- 国家义务教育质量监测心理健康和德育测试题
- 绝经综合征(中医)评定量表
- 扬帆蓝天无人机法律法规与应用培训教案课件
- 工会经费列支范围及工会经费支出范围
- 成人高考课件
- 村委会会议签到表
- 哲学与人生全套课件146P
- 中考物理复习交流
- 敬老院设备采购投标方案(技术方案)
- 充电桩采购安装售后服务方案
- 《旅行社条例》和《旅行社管理条例》对比解读
评论
0/150
提交评论