等腰三角形课件PPT_第1页
等腰三角形课件PPT_第2页
等腰三角形课件PPT_第3页
等腰三角形课件PPT_第4页
等腰三角形课件PPT_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、小河九年一贯制学校执教者:张晓琴有两条边相等的三角形叫做有两条边相等的三角形叫做等腰三角形等腰三角形. . 等腰三角形中,等腰三角形中,相等的两边叫相等的两边叫做腰做腰,ACB腰腰腰腰底边底边顶角顶角底角底角底角底角另一边叫做另一边叫做底边底边, 两腰的夹角两腰的夹角叫做叫做顶角顶角, 腰和底边的夹角腰和底边的夹角 叫做叫做底角底角.AB、ACBCB、 CCA、CBABA、 BAC、ADACD、 ADCDC 图形图形顶角顶角ACCAD写一写写一写 1、动手操作:、动手操作:把一张长方形纸片按图中虚线对折,并剪去把一张长方形纸片按图中虚线对折,并剪去阴影部分,再把它展开,得到的阴影部分,再把它展

2、开,得到的ABC有什么特点?有什么特点? 2、想一想:、想一想: (1)剪出的三角形是等腰三角形吗?并指出其中的腰、底边、顶角、底角。)剪出的三角形是等腰三角形吗?并指出其中的腰、底边、顶角、底角。(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还有没有重合沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?的部分?并指出重合的部分是什么? (3)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。ABCD ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两

3、腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对

4、折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还

5、有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? ABC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?

6、并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? AC(2)把剪出的等腰三角形)把剪出的等腰三角形ABC沿折痕对折,除两腰重合外还沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?有没有重合的部分?并指出重合的部分是什么? 腰腰腰腰底角底角ABCD 你发现了什么?结论1:等腰三角形的两底角相等ABC结论结论2:等腰三角形顶角的角平分线,:等腰三角形顶角的角平分线,既是底边上的中线,也是底边上的高。既是底边上的中线,也是底边上的高。 性质性质1、等腰三角形的两个底角相等。 (等边对等角等边对等角)ABCD已知: ABC 中,ABAC证明:作底边BC上的中线AD

7、。在ABD与ACD中:ABAC(已知)BDDC(作图) ADAD(公共边)ABD ACD(SSS)BC(全等三角形对应角相等全等三角形对应角相等)ABC性质性质1用数学语言表示为:用数学语言表示为:在ABC中 ABAC(已知) BC(等边对等角等边对等角)求证:BC 。 方法一:作顶角BAC的平分线AD。 AD平分BAC 12 在ABD与ACD中ABAC(已知)12(已证) ADAD(公共边) ABD ACD(SAS) BCACBD方法二:作底边BC的高AD。 ADBC ADB ADC90在RTABD与RTACD中 ABAC(已知) ADAD(公共边) ABD ACD(HL) BC112AB

8、CD议一议议一议:说说为什么在添加辅助线时,作顶角平分线,底边中线,底边高都能使分成的两个三角形全等? 性质性质2:等腰三角形的顶角平分线,底边上的中线,底边等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合。(上的高互相重合。(通常说成等腰三角形的通常说成等腰三角形的“三线合一三线合一”)性质性质2可分解成下面三个方面来理解:可分解成下面三个方面来理解:1、等腰三角形的顶角的平分线,既是底边上的中线,又是底边上的高。、等腰三角形的顶角的平分线,既是底边上的中线,又是底边上的高。2、等腰三角形的底边上中线,既是底边上的高,又是顶角平分线。、等腰三角形的底边上中线,既是底边上的高,又是顶角

9、平分线。3、等腰三角形的底边上的高,既是底边上的中线,又是顶角平分线。、等腰三角形的底边上的高,既是底边上的中线,又是顶角平分线。ABCD21数学语言表示为:在数学语言表示为:在ABC中中 ABAC 12(已知)(已知) BDDC ADBC(等腰三角形三线合一)(等腰三角形三线合一)数学语言表示为:在数学语言表示为:在ABC中中 ABAC BDDC (已知)(已知) ADBC 12 (等腰三角形三线合一(等腰三角形三线合一)数学语言表示为:在数学语言表示为:在ABC中中 ABAC ADBC (已知)(已知) BDDC 12 (等腰三角形三线合一)(等腰三角形三线合一) 1、练一练(基础训练)。

10、、练一练(基础训练)。 (1)已知等腰三形的一个顶角为)已知等腰三形的一个顶角为36 ,则它,则它的两个底角分别为的两个底角分别为 。(2)已知等腰三角形的一个角为)已知等腰三角形的一个角为40,则其它,则其它两个角分别为两个角分别为 _ 。 (3)已知等腰三角形的两边长分别是已知等腰三角形的两边长分别是4和和6,则它的周长是则它的周长是 _。72 、7270 、7040 、10014 或或 16(3题的变式题)题的变式题)若把此等腰三角形的两边长改若把此等腰三角形的两边长改为为3和和7,则它的周长应是多少?,则它的周长应是多少?或或ABC、ADB、DBC336、72、72 ABC的三个内角分

11、别为的三个内角分别为_ 。ACBD(4)ABC中,中,ABAC,D在在AC上,上,且且BDBCAD 。图中有图中有 个等腰三角形,它们分个等腰三角形,它们分别为别为_ 。2X2XXX ABC中,中,ABAC,D是是BC边上的中点,边上的中点, DFAC于于F DE AB 于E .求证:求证:DEDF。ABCDEF 证明:证明: DEAB,DFAC(已知)BEDCFD 又D是BC中点(已知)BDDC ABAC(已知) BC(等边对等角)在DBE与与DCF中中 DEBDFC(已证) BC(已证)BDDC(已证) BDE CDF(AAS)DEDF 方法二:连方法二:连AD 。 ABAC,BDDC(已

12、知) AD是BAC的平分线。 (等腰三角形三线合一等腰三角形三线合一) 又DEAB DFAC DEDF (角平分线上的点到这个角平分线上的点到这个 角的两边距离相等角的两边距离相等) 小结:通过本节课的学习你有收获吗?小结:通过本节课的学习你有收获吗?1、本节课的主要教学知识是等腰三角形的两个性质。、本节课的主要教学知识是等腰三角形的两个性质。等腰三角形的性质内容应用格式性质性质1ABC性质性质2ABC等腰三角形的等腰三角形的两个底角相等两个底角相等 等腰三角形的顶角等腰三角形的顶角 平分线、底边上的平分线、底边上的中线底边上的高中线底边上的高互相重合。互相重合。ABAC(已知) BC (等边对等角)ABAC,12(已知) BDDC,ADBC(三线合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论