版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角函数总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。(2)与角终边相同的角的集合:与角终边在同一条直线上的角的集合: ;与角终边关于轴对称的角的集合: ;与角终边关于轴对称的角的集合: ;与角终边关于轴对称的角的集合: ;一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ;终边在二、四象限的平分线上角的集合: ;终边在四个象限的平分线上角的集合: ;(3)区间角的表示:象限角:第一象限角: ;第三象限角:
2、;第一、三象限角: ;xyOxyO写出图中所表示的区间角: (4)正确理解角:要正确理解“间的角”= ;“第一象限的角”= ;“锐角”= ;“小于的角”= ;(5)由的终边所在的象限,通过 来判断所在的象限。来判断所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角的弧度数的绝对值,其中为以角作为圆心角时所对圆弧的长,为圆的半径。注意钟表指针所转过的角是负角。(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角的顶点为坐标原点,始边为轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点到原点的
3、距离记为,则 ; ; ; ; ; ; 如:角的终边上一点,则 。注意r>0(2)在图中画出角的正弦线、余弦线、正切线;比较,的大小关系: 。xyOaxyOaxyOayOa0sincos(3)特殊角的三角函数 值:三、同角三角函数的关系与诱导公式:商数关系=tan(1)同角三角函数的关系作用:已知某角的一个三角函数值,求它的其余各三角函数值。倒数关系tan·cot=1平方关系sin2+ cos2=1, 1+tan2=, 1+cot2=(2)诱导公式可用概括为:2K±,-,±,±,±的三角函数 奇变偶不变,符号看象限的三角函数: , , ;:
4、 , , ;: , , ;: , , ;: , , ;: , , ;: , , ;: , , ;: , , ;诱导公式可用概括为:2K±,-,±,±,±的三角函数 奇变偶不变,符号看象限 的三角函数作用:“去负脱周化锐”,是对三角函数式进行角变换的基本思路即利用三角函数的奇偶性将负角的三角函数变为正角的三角函数去负;利用三角函数的周期性将任意角的三角函数化为角度在区间0o,360o)或0o,180o)内的三角函数脱周;利用诱导公式将上述三角函数化为锐角三角函数化锐. (3)同角三角函数的关系与诱导公式的运用:已知某角的一个三角函数值,求它的其余各三角函数
5、值。注意:用平方关系,有两个结果,一般可通过已知角所在的象限加以取舍,或分象限加以讨论。求任意角的三角函数值。步骤:任意负角的三角函数任意正角的三角函数0o360o角的三角函数求值公式三、一公式一0o90o角的三角函数公式二、四、五、六、七、八、九已知三角函数值求角:注意:所得的解不是唯一的,而是有无数多个步骤:确定角所在的象限;如函数值为正,先求出对应的锐角;如函数值为负,先求出与其绝对值对应的锐角;根据角所在的象限,得出间的角如果适合已知条件的角在第二限;则它是;如果在第三或第四象限,则它是或;如果要求适合条件的所有角,再利用终边相同的角的表达式写出适合条件的所有角的集合。如,则 , ;
6、;_。注意:巧用勾股数求三角函数值可提高解题速度:(3,4,5);(6,8,10);(5,12,13);(8,15,17);升幂公式1+cos= 1-cos=1±sin=()21=sin2+ cos2 sin=降幂公式sin2 cos2sin2+ cos2=1 sin·cos=和差化积公式sin+sin= 1-cos= sin-sin= 1±sin=()2cos+cos=cos-cos= - 1+cos=tan+ cot= tan- cot= -2cot2 两角和与差的三角函数关系sin()=sin·coscos·sincos()=cos
7、83;cossin·sin倍角公式 sin2=2sin·cos cos2=cos2-sin2=2cos2-1=1-2sin2 四、三角函数图像和性质1周期函数定义:对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,都成立,那么就把函数叫做周期函数,不为零的常数叫做这个函数的周期请你判断下列函数的周期 y=tan x y=tan |x| y=|tan x| 例 求函数f(x)=3sin (的周期。并求最小的正整数k,使他的周期不大于1结论:如函数对于,那么函数f(x)的周期T=2k; 如函数对于,那么函数f(x)的对称轴是2图像 3、图像的平移对函数yAsin
8、(xj)k (A0, 0, j0, k0),其图象的基本变换有: (1)振幅变换(纵向伸缩变换):是由A的变化引起的A1,伸长;A1,缩短 (2)周期变换(横向伸缩变换):是由的变化引起的1,缩短;1,伸长 (3)相位变换(横向平移变换):是由的变化引起的j0,左移;j0,右移(4)上下平移(纵向平移变换): 是由k的变化引起的k0, 上移;k0,下移五、三角恒等变换: 三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据
9、角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:是的二倍;是的二倍;是的二倍;是的二倍;是的二倍;是的二倍;是的二倍。;问: ; ;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常化切、割为弦,变异名为同名。(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有: (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。常用降幂公式有: ; 。降幂并非绝对,有时需要升幂,如对无理式常用升幂化为有理式,常
10、用升幂公式有: ; ;(5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。 如:; ; ; ; ; = ; = ;(其中 ;) ; ;(6)三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;基本规则是:切割化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,和积互化,特殊值与特殊角的三角函数互化。如: ; ; ; ;推广: ;推广:要点概述:(1)求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等。(2)”凑角”要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,如是的半角,是的倍角等。(3)要掌握求值问题的解题规律和
11、途径,寻求角间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用等。(4)求值的类型:“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和差化积、积化和差、升降幂公式转化为特殊角并且消降非特殊角的三角函数而得解。“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,关键在于“变角”,使其角相同或具有某种关系。“给值求角”:实质上可转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。(5)灵活运用角和公式的变形,
12、如:,等,另外重视角的范围对三角函数值的影响,因此要注意角的范围的讨论。(6)化简三角函数式常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角函数名称的变化(即当式子中所含三角函数种类较多时,一般是“切割化弦”),有时,两种变换并用,有时只用一种,视题而定。(7)证明三角恒等式时,所用方法较多,一般有以下几种证明方法:从一边到另一边,两边等于同一个式子,作差法。 题型归纳(1)求值题 例1. 已知,且,求。点评:<1>三角变换是解决已知三角函数值求三角函数值这类题型的关键;<2>常见角的变换:,等。(2)化简题 例2. 化简:,其中。(3)证明题 例3.
13、求证:(4)与向量、三角形等有关的综合题 例4. 平面直角坐标系内有点。(1)求向量与的夹角的余弦;(2)求的最值。【模拟试题】一. 选择题(每小题4分,共48分)1. 的值为( )A. B. C. D. 2. 可化为( )A. B. C. D. 3. 若,且,则的值是( )A. B. C. D. 4. 函数的周期为T,最大值为A,则( )A. B. C. D. 5. 已知,则的值为( )A. B. C. D. 6. 已知,则( )A. B. C. D. 7. 设,则( )A. 4B. C. D. 8. 的值是( )A. B. C. D. 9. 在ABC中,若,则ABC的形状一定是( )A.
14、等腰三角形B. 直角三角形 C. 等腰直角三角形D. 等边三角形 10. 要使斜边一定的直角三角形周长最大,它的一个锐角应是( )A. 30°B. 45°C. 60°D. 正弦值为的锐角 11. 已知向量,向量,向量,则向量与的夹角范围为A. B. C. D. 12. 已知:,则的值为( )A. B. 4C. D. 1二. 填空题(每小题3分,共12分)13. 已知,则_。14. 函数的最小正周期为_。15. 已知,且满足关系式,则_。16. 已知。若,则可化简为_。三. 解答题(每小题10分,共40分) 17. 求值: 18. 已知函数(1)求函数的最小正周期;(2)求函数的最大值、最小值及取得最大值和最小值时自变量x的集合;(3)求函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学工作计划模板锦集七篇
- 减税申请书15篇
- 小学生读书笔记(汇编15篇)
- 初一生物教学工作计划
- 高中英语期末总结10篇
- 2024年交通运输保理协议3篇
- 六年级我的小伙伴作文600字5篇
- 2024年度绿色生态苗圃基地种植技术合作合同3篇
- 兹维博迪金融学第二版课件Chapter01
- 关于常见职业和工作地点的英文
- 齿轮参数计算表
- 园林绿化养护协议书
- (完整word版)使馆写信催签
- 80t龙门吊专项安拆方案(共39页)
- 轿车胎分类知识
- doyouwanttobuildasnowman中英文歌词对照
- 化学元素周期表(空白)
- 9第九章细胞质遗传
- (完整word版)施工单位对分包单位的管理制度
- 谈微元法在高中物理解题中的应用
- 化工原理课程设计分离乙醇—水二元物系浮阀式精馏塔的设计
评论
0/150
提交评论