




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:·诱导公式: 函数角Asincostgctg-sincos-tg-ctg90°-cossinctgtg90°+cos-sin-ctg-tg180°-sin-cos-tg-ctg180°+-sin-costgctg270°-cos-sinctgtg270°+-cossin-ctg-tg360°-sincos-tg-ctg360°+sincostgctg·和差角公式: ·和差化积公式:
2、183;倍角公式:·半角公式:·正弦定理: ·余弦定理: ·反三角函数性质:高阶导数公式莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相
3、关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程一、原函数与不定积分概念 微积分学主要包含两大内容:微分学与积分学,主要工具是极限思想方法。单元二和单元三就是微分学及其应用。本单元是积分学中的不定积分,是求导数的逆过程。例如,如果已知运动的速度规律: v = v ( t ),要求运动的位移规律 s = s ( t );又如,已知函数的变化率为 y = f ( x ),要求原来的函数 y = F ( x ),这都是求不定积分问题。 定义 1 设函数 y = f ( x )在某个
4、区间上有定义,如果存在函数 y = F ( x ),对于该区间上任一点 x ,使得 F' ( x ) = f ( x )或 d F ( x ) = f ( x ) dx 成立,则称 F ( x )是 f ( x )在该区间上的一个原函数( primitive function )。例如 ( 1 ) 上的一个原函数 ( 2 ) 上的一个原函数 ( 3 ) 上的一个原函数 ( 4 ) 上的一个原函数 ( 5 ) 上的一个原函数 一般地说,由于常数的导数为 0 ,如果 F ( x )是 f ( x )的一个原函数,那么 F ( x ) + C 也都是 f ( x )的原函数(其中 C 是任意
5、常数)。因此,如果 f ( x )有一个原函数 F ( x ),它就有原函数族: F ( x ) +C ,这个原函数族就称为 f ( x )的不定积分。即 定义 2 如果 F ( x )是 f ( x )的一个原函数,则称原函数族 F ( x ) +C 为 f ( x )的不定积分( indefinite integral ),记为 ,即 其中 为积分号( integral sign ), 为被积表达式( integrand expression ), 被积函数( integrand ), x 为积分变量( variable of integration )。 求不定积的的问题:求出一个原函数
6、,两加上一个任意常数。例如 不定积分的几何意义:由于 中 C 的取值不同,代表了不同的积曲线,且它们均可由 的图像在垂直方向平移而得,是一族“平行”的曲线。 二、不定积分的性质 性质 1 或 ; 或 本性质表明:如果先积分,后求导(或求微分),则两种运算互相抵消。反之,先求导(或求微分),后积分,则二者作用抵消后还需加上积分常数。即是说,积分运算是求导运算(或微分运算)的逆运算。 性质 2 函数的代数和的积分等于各自积分的代数和,即 性质 3 被积函数中的非零常数因子可以提到积号外,即 (其中常数 K 0 ) 三、基本积分公式 (公式中 C 为积分常数) (1) ( K是常数) (2) (常数 a1) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 或 = (13) 或 = 不定积分简单方法 例 1 利用基本公式求不定积分: (1) (2) (3) (4) 解: (1) 利用公式( 2 ),这里 a=3 , (2) 利用基本公式( 5 ) (3) 利用基本公式( 6 ) (4) 利用基本公式( 3 ) 例 2 求 解:利用基本公式和不定积分性质: 注:当积分被子分成代数和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年细胞治疗产品临床试验法规解读与审批流程报告
- 海上风能资源评估报告2025年深远海风电发展规划海上风电场经济效益分析
- 茶与咖啡的跨界融合:2025年市场发展趋势与品牌竞争力研究报告
- 城市自来水厂升级改造2025年环境友好型技术应用报告
- 2025年智能仓储货架制造项目智能控制系统研发报告
- 2025年医院信息化建设电子病历系统优化策略研究报告
- 2025年医院电子病历系统优化在医院信息化建设中的数据安全防护机制研究报告
- 2025年城市地下综合管廊建设专项债券资金申请财务分析报告
- 2025年医药行业CRO研发外包模式下的研发项目管理培训与咨询报告
- 2025年医药企业研发外包(CRO)模式企业战略规划与实施报告
- 2024-2030年中国连锁药店行业市场发展状况及投资前景规划研究报告
- 灾难事故避险自救-终结性考核-国开(SC)-参考资料
- 2025年中考物理终极押题猜想(广东省卷专用)(原卷版)
- 小学科学三年级下册《5自制小乐器》课件
- 六年级语文下册 期末复习非连续性文本阅读专项训练(一)(含答案)(部编版)
- 降低制粉单耗(集控五值)-2
- 电力分包项目合同范本
- 2024年急危重症患者鼻空肠营养管管理专家共识
- 国家开放大学电大《药剂学》期末试题题库及答案
- 2024年法律职业资格考试(试卷一)客观题试卷与参考答案
- 山东师范大学学校管理学期末复习题
评论
0/150
提交评论