《电气测试技术》第一章_第1页
《电气测试技术》第一章_第2页
《电气测试技术》第一章_第3页
《电气测试技术》第一章_第4页
《电气测试技术》第一章_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电气测试基本技术电气测试基本技术第一章第一章 电气测量基本知识电气测量基本知识Technology of Electric Measurement郭长兴郭长兴短号:短号:679528考核方式考核分类考核分类考核方式考核方式考核时间考核时间成绩成绩过程考核过程考核平时成绩平时成绩作业、出勤、态度、作业、出勤、态度、纪律等纪律等不定期考核不定期考核20%20%实验成绩实验成绩操作及报告操作及报告按学时安排按学时安排20%20%综合考核综合考核主要考核学生主要考核学生对该门课程的对该门课程的掌握情况掌握情况以闭卷、笔试的形以闭卷、笔试的形式式120120分钟分钟60%60%第2页第3页 第一章 电气

2、测量基本知识内容概要内容概要 电工仪表与电气测量是从事电气专业的技术人员必须掌握的一门知识。 电工及电气测量就是借助于测量设备,把未知的电量或磁量与作为测量单位的同类标准电量或标准磁量进行比较,从而确定未知电量或磁量(包括数值和单位)的过程。第4页 1.电气测量的概念、分类1.1 电气测量的概念电气测量的概念第5页 1.电气测量的概念、分类1.2 电气测量的内容电气测量的内容第6页 1.电气测量的概念、分类1.3 电气测量的过程电气测量的过程第7页 1.电气测量的概念、分类1.4 电气测量的分类电气测量的分类 以测量结果的获得方式分类:1.直接测量 指仪表读出值就是被测的电磁量,例如用电流表测

3、量电流(串联),用电压表测量电压(并联)。2.间接测量 指要利用某种中间量与被测量之间的函数关系,先测出中间量,再算出被测量。例如用伏安法测电阻。3.组合测量 指被测量与中间量的函数式中还有其他未知数,须通过改变测量条件,得出不同条件下的关系方程组,然后解联立方程组求出被测量的数值。例如精密电阻与温度之间的关系。第8页 1.电气测量的概念、分类第9页 1.电气测量的概念、分类 以测量过程的特点分类:1.直读测量法 利用仪表直接读取测量数据。2.比较测量法 将被测量与度量器放在比较仪器上进行比较,从而求得被测量的数值。包括:零位测量法、微差测量法、替代测量法零位测量法:比较仪表指零时,从度量器读

4、出被测量的数值。微差测量法:从比较仪求得差值,根据度量器数值和比较差值,求得被测量的数值。替代测量法:将已知量与被测量先后置于同一测量装置中,若两次测量装置都处于相同状态,可认为被测量等于已知量,再从已知量读出被测量值。 在科学实验和工程实践中,任何测量结果都含有误差。由于误差存在的必然性和普通性,人们只能将它控制到尽量低的程度而无法消除它。因此我们根据需要对误差的来源和测量误差的性质进行分类,便于研究。第10页 2.测量误差2.1 测量误差的概念测量误差的概念测量误差测量误差,即测量示值与被测量物理量真值之间的差别。真值真值,即被测物理量具有的真实大小。第11页 2.测量误差仪器、仪表误差

5、即仪器仪表本身及其附件引起的误差例如,仪器仪表本身的电气或机械性能不完善、零点和增益漂移、非线性、刻度不准确以及标准量不稳定等所引起的误差均属于仪器仪器仪表误差仪表误差。 影响误差 即由于各种环境因素与仪器仪表所要求的使用条件不一致而造成的误差。例如,由于温度、湿度、大气压、电磁场、电源电压及频率等波动所造成的误差均属于影响误差影响误差。 2.2 误差的来源误差的来源第12页 2.测量误差方法误差 即由于测量方法不合理所造成的误差例如,用低输入电阻的仪表测量高内阻回路的输出电压所引起的误差属于方法误差方法误差。理论误差 即由于仪器仪表所依据的理论或公式本身不完善或者是近似的所引起的误差。例如,

6、用均值表测量非正弦信号电压,须进行波形换算,其定度系数为: 由于结果是无理数,所取得的1.11是个近似值所造成的误差属于理论理论误差误差。11. 122K 人身误差 即由于测量者的分辨力、视觉疲劳、习惯或缺乏责任心等因素引起的误差。人身误差是由于人为因素造成的,欲减小人身误差必须加强责任加强责任心心。 第13页 2.测量误差第14页 2.测量误差2.3 测量误差的分类测量误差的分类常用的误差分类方法,见下表第15页测量误差的分类方法 2.测量误差第16页1.系统误差 在测量过程中所产生的大小恒定或按一定的规律变化的误差。产生系统误差的原因有以下几种:基本误差:由于仪表本身不完善产生的误差附加误

7、差:由于仪表使用不当而产生的误差方法误差:由于测量方法不正确或者由于测量依据的理论不完善等原因产生的误差人身误差:由于测量人员的感觉不完善而产生的误差 2.测量误差减小系统误差的方法:减小系统误差的方法:1.对测量结果引入修正值2.选择适当的测量方法,使系统误差能够抵消而不会带入测量值中第17页 2.测量误差2.随机误差 在相同条件下,多次重复测量同一被测量,其误差的大小和符号均是无规律变化的误差。产生随机误差的原因由于许多复杂的因素微小变化的总和引起的。例如:实验时温度的随机波动、螺旋测微计测力在一定范围内随机变化、读数时的视差影响随机误差表征了测量结果的精密度,随机误差小,精密度高,反之,

8、精密度低。减小随机误差的方法:减小随机误差的方法:使用统计方法当测量次数足够多时,大多数随机误差是服从正态分布正态分布的。服从正态分布规律的随机误差具有下列特点(如下图所示): 单峰性 绝对值小的误差比绝对值大的误差出现的概率大,在误差 处,出现的概率最大。 有界性 绝对值大于某一数值的误差几乎不出现,故可认为随机误差有一定的界限。第18页0 对称性 大小相等符号相反 的误差出现的概率大致相同。 抵偿性 正、负误差是相互抵消的,因此随机误差的代数和趋于或者等于零。 2.测量误差第19页 2.测量误差3.疏失误差 在相同条件下,对同一被测量进行多次测量,可能有某些测量结果明显偏离了被测量的真值,

9、所形成的误差。由于测量过程中的某些疏忽大意造成的。例如:实验时错误读数、仪器有缺陷、环境干扰等应避免出现粗大误差。减小随机误差的方法:减小随机误差的方法:如出现粗大误差,应分析粗大误差产生的原因。处理数据时,剔除异常数据。第20页2.4 误差的表示方法误差的表示方法1.绝对误差 是指测量示值与被测物理量真值之差,表示为 。式中,AX是被测量的测定值, A0是被测量的真值, 是测量的绝对误差0 xAA 注意:1、绝对误差有单位,与被测相同 2、绝对误差有大小和正负 3、绝对误差不反映测量的准确程度 2.测量误差第21页修正值定义:与绝对误差的数值相等而符号相反的量值称为修正值,用 来表示,则:修

10、正值 是通过检定(或校准)由上一级标准(或基准)以表格、曲线、公式或数字等形式给出的。因此,用修正值与仪表的示值相加,可算出被测量的实际值,即: 可见,用修正值可以减小测量误差,得到更接近于被测量真值的实际值。 应该指出,使用修正值必须在仪表检定的有效期内。修正值本身也有误差。 0 xCAA C0 xAACC 2.测量误差第22页 2.测量误差 例11 某电路中的电流为10A,用甲电流表测量时的读数为9.8A,用乙电流表测量时其读数为10.4A。试求两次测量的绝对误差。 解 由式(1-2)可得: 甲表测量的绝对误差为: A 乙表测量的绝对误差为: A第23页2.相对误差 绝对误差与被测量实际值

11、A0之比的百分数,即0100%100%xAA 例例 测量两个电压,实际值测量两个电压,实际值 , ,仪表的,仪表的示值分别为示值分别为 , 其绝对误差分别为:其绝对误差分别为:很显然,虽然二者的绝对误差相同,但是二者测量的精精确度却相差甚远确度却相差甚远,因此有必要引入相对误差的概念。 100V1U5V2U101V1xU6V2xU1V100)V-(101111UUUx1V5)V-(6222UUUx 2.测量误差第24页3.引用误差 绝对误差与测量仪器量程(满刻度值)的百分比称为引用误差,即 式中: 引用误差; 测量仪表的量程。 100%NMANMA引用误差是用来表示仪表本身性能好坏的,它表明了

12、仪表基本误差的数值。一只合格的仪表,在正常工作条件下,其最大引用误差应小于允许的数值。 2.测量误差第25页表征系统误差的大小。测量的测得值与其表征系统误差的大小。测量的测得值与其“真值真值”的接的接近程度。从测量误差的角度来说,正确度所反映的是测近程度。从测量误差的角度来说,正确度所反映的是测得值的系统误差。正确度高,不一定精密度高。也就是得值的系统误差。正确度高,不一定精密度高。也就是说,测得值的系统误差小,不一定其随机误差亦小。说,测得值的系统误差小,不一定其随机误差亦小。正确度正确度指在多次精密测量中,测量读数重复一致的程度,表征指在多次精密测量中,测量读数重复一致的程度,表征即随机误

13、差的大小。在相同条件下,对被测量进行多次即随机误差的大小。在相同条件下,对被测量进行多次反复测量,测得值之间的一致反复测量,测得值之间的一致(符合符合)程度。从测量误差程度。从测量误差的角度来说,精密度所反映的是测得值的随机误差。精的角度来说,精密度所反映的是测得值的随机误差。精密度高,不一定正确度密度高,不一定正确度(见下见下)高。也就是说,测得值的高。也就是说,测得值的随机误差小,不一定其系统误差亦小。随机误差小,不一定其系统误差亦小。精密度精密度表示测量中系统误差和随机误差两者的综合影响。被测表示测量中系统误差和随机误差两者的综合影响。被测量的测得值之间的一致程度以及与其量的测得值之间的

14、一致程度以及与其“真值真值”的接近程的接近程度,即是精密度和正确度的综合概念。从测量误差的角度,即是精密度和正确度的综合概念。从测量误差的角度来说,精确度度来说,精确度(准确度准确度)是测得值的随机误差和系统误是测得值的随机误差和系统误差的综合反映。差的综合反映。 准确度准确度 2.测量误差第26页l精密度、正确度与准确度(又称精确度)精密度、正确度与准确度(又称精确度) 2.测量误差这三个名词分别用来反映随机误差、系统误差和综合误差的大小。系统误差小称之为正确度高,随机误差小称之为精密度高。准确度高则是指系统误差和随机误差都比较小,指既“正确”又“精密”的测量。第27页 3.常用电源的分类和

15、参数常用的实验电源一、常用的实验电源:二、电源的参数:直流电源的参数:额定电压和额定电流交流电源的参数:除额定电压和额定电流外,还有频率和功率因数脉冲电源的参数:电压幅度、周期和脉冲宽度第28页 3.常用电源的分类和参数三、标准电池1.主要技术主要技术:电解液浓度(饱和式和不饱和式)、年稳定性2.使用注意事项使用注意事项:按规定的温度存放和使用、不能过载、禁止摇晃和振动、保存好检定证书和检定数据第29页 3.常用电源的分类和参数 一、电阻器第30页 4.电阻器、电感器、电容器标准阻值与允许误差、额定功率、额定电流、最大工作电压主要技主要技术参数术参数固定电阻器和可调电阻器分类分类直接表示法、色

16、环表示法参数表参数表示方法示方法第31页 4.电阻器、电感器、电容器第32页 4.电阻器、电感器、电容器第33页 4.电阻器、电感器、电容器第34页 4.电阻器、电感器、电容器第35页 4.电阻器、电感器、电容器电感量、品质因数、额定电流主要技术参数低频扼流圈、高频电感线圈、色码电感分类分类 二、电感器第36页 4.电阻器、电感器、电容器第37页 4.电阻器、电感器、电容器 三、电容器标称容量、耐压强度、绝缘电阻、损耗因数主要技术参数介质分类;变化情况分类分类分类第38页1.逐差法逐差法 逐差法是对等间距测量的有序数据,进行逐项或相等间隔相减得到结果。它计算简便,并可充分利用数据,及时发现差错

17、,总结规律,是物理实验中常用的一种数据处理方法使用条件:使用条件:(1)自变量)自变量x是等间距变化是等间距变化(2)被测物理量之间函数形式可以写成)被测物理量之间函数形式可以写成x的多项式:的多项式: m0mmmxay分类分类逐项逐差(用于验证被测量之间是否存在多项逐项逐差(用于验证被测量之间是否存在多项式函数关系)式函数关系)分组逐差(用于求多项式的系数)分组逐差(用于求多项式的系数) 5.测量数据处理第39页 设实验中,等间隔的在弹簧下加砝码(如每次加一克),共加9次,分别记下对应的弹簧下端点的位置L0 L1 L2 L9 ,则可用逐差法进行以下处理应用举例应用举例(1)验证函数形式是线性

18、关系)验证函数形式是线性关系 看看L1 L2 L9是否基本相等是否基本相等.当当 Li基本相等时基本相等时,就就验证了外力与弹簧的伸长量之间的函数关系是线性的,即验证了外力与弹簧的伸长量之间的函数关系是线性的,即F=k L用此法可检查测量结果是否正确,但注意的是必须用逐项逐差用此法可检查测量结果是否正确,但注意的是必须用逐项逐差899122011LLLLLLLLL (1.61)把所得的数据逐项相减把所得的数据逐项相减 5.测量数据处理(2)求物理量数值求物理量数值现计算每加一克砝码现计算每加一克砝码 时弹簧的平均伸长量时弹簧的平均伸长量从上式可看出用逐项逐差,中间的测量值全部抵消了,只从上式可

19、看出用逐项逐差,中间的测量值全部抵消了,只有始末二次测量起作用,与一次加九克砝码的测量完全等有始末二次测量起作用,与一次加九克砝码的测量完全等价。价。若用逐项逐差若用逐项逐差(1.61)得到:)得到:899122011LLLLLLLLL 9LL9LLLLLL9LLLL09891201921 再求平均再求平均 5.测量数据处理 为了保证多次测量的优点,只要在数据处理方法上作些组合,仍为了保证多次测量的优点,只要在数据处理方法上作些组合,仍能达到多次测量减小误差的目的。所以我们采用分组逐差。能达到多次测量减小误差的目的。所以我们采用分组逐差。 通常可将等间隔所测的值分成前后两组,前一组为通常可将等

20、间隔所测的值分成前后两组,前一组为L0 L1 L2 L3 L4 后一组为后一组为L5 L6 L7 L8 L9 前前后后两两组组对对应应项项相相减减495162051LLLLLLLLL 再再取取平平均均值值 40iii5491605521)LL(515LLLLLL5LLLL 由此可见,分组逐差和逐项逐差不同,这时每个数据都用上了,有利于由此可见,分组逐差和逐项逐差不同,这时每个数据都用上了,有利于减小误差。但注意:这里的减小误差。但注意:这里的 是增加五克时弹簧的平均伸长量。是增加五克时弹簧的平均伸长量。L 5.测量数据处理第42页1.最小二乘法最小二乘法 即数据的直线拟合。它计算简便用作图法进

21、行拟合带有相当大的主观随意性,用最小二乘法进行直线拟合优于作图法。如果能找到一条最佳的拟合直线,那么这条拟合直线上各个相应点的值与测量值之差的平方和在所有拟合直线中是最小的。 最小二乘法的原理:最小二乘法的原理: 5.测量数据处理 : 通过实验,通过实验,等精度等精度地测得一组互相独立的实验数据(地测得一组互相独立的实验数据(xi,yi,i =1,2k),设此两物理量),设此两物理量 x、y 满足线性关系,且假满足线性关系,且假定实验误差主要出现在定实验误差主要出现在yi上,设拟合直线公式为上,设拟合直线公式为 y = f(x) =a0+ a1 x 。则测量值和最佳值(回归直线上对应坐标)的则测量值和最佳值(回归直线上对应坐标)的偏差偏差01()iiiivyyyaa x220111()kkiiiiiSvyaax按最小二乘法原理,应使下式最小按最小二乘法原理,应使下式最小 5.测

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论