《全等三角形的判定(SSS)》教案_第1页
《全等三角形的判定(SSS)》教案_第2页
《全等三角形的判定(SSS)》教案_第3页
《全等三角形的判定(SSS)》教案_第4页
《全等三角形的判定(SSS)》教案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、?全等三角形的判定(SSS)?教案第一课时一、内容和内容解析1内容判定两个三角形全等的条件SSS2内容解析本节课的内容是探索三角形全等条件的第一课时,是在学习了全等三角形的概念,全等三角形的性质后展开的它不仅是下节课探索三角形全等其它条件的根底,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法因此本节课的知识具有承前启后的作用,占有相当重要的地位边边边公理是通过学生探究获得的用直尺、圆规画三角形,为了获得边边边公理,通过让学生动手作图、剪图、比拟图的过程,感悟根本领实的正确性,归纳出“三边对应相等的两个三角形全等 这一判定公理边边

2、边公理也是证明线段相等、角相等的重要途径,关键是三角形全等条件的分析与探索二、目标和目标解析1目标1掌握边边边条件的内容;能初步应用边边边条件判定两个三角形全等 2会运用边边边条件证明两个三角全等2目标解析达成目标1的标志是:通过学生动手画一画,把所画的三角形剪下去与同伴所画的三角形进行比拟,发现规律得出判定两个三角形全等的条件边边边公理,并运用它进行简单的说理和证明达成目标2的标志是:要求学生能够熟练利用边边边条件证明两个三角全等三、重点、难点教学重点:能应用边边边条件判定两个三角形全等教学难点:探究三角形全等的条件四、教学过程设计一知识回忆,提出问题ABC AB C,找出其中相等的边与角:

3、ABCCBA思考:满足这六个条件可以保证ABCABC吗?师生活动:师提出问题,学生答复.问题1:当满足一个条件时, ABC 与ABC全等吗?师生活动:让学生经历画图的过程后,总结经验达成共识:不一定全等 如下图:一条边分别相等时:ACB4cmABC4cm一个角分别相等时:ABC45°45°BCA问题2:当满足两个条件时, ABC 与ABC全等吗?师生活动:让学生通过画图、展示交流后得出结论达成共识:不一定全等 如下图:两条边分别相等时:9cm5cmABCA5cmCB9cmBCA45°65°45°65°ABC两个角分别相等时:一边一角分

4、别相等时:ACB4cmACB4cm问题3:当满足三个条件时, ABC 与ABC全等吗?满足三个条件时,又分为几种情况呢?师生活动:让学生交流讨论后、得到以下几种情况师问:我们现在研究第种情况当两个三角形满足三边对应相等时,这两个三角形全等吗?设计意图:先提出“全等判定问题,构建出三角形全等条件的探索路径,然后以问题串的方式呈现探究过程,引导学生层层深入地思考问题二动手操作,感悟新知活动:尺规作图,探究“边边边判定方法先任意画出一个ABC,再画出一个ABC,使AB= AB,BC= BC,AC= AC把画好的ABC剪下,放到ABC 上,它们全等吗?ABC解:画法 1画线段BC=BC ; 2分别以B

5、、C为圆心,BA、BC 为半径画弧,两弧交于点A;3连接线段AB,AAB就是所求三角形CAB师生活动:教师引导学生用尺规作图作出ABC然后剪图、进而让不同小组的学生比拟图的形状、大小最后达成共识探究1:作图的结果反映了什么规律?你能用文字语言概括吗?师生活动:学生答复,并归纳概括出边边边公理,教师加以补充,形成结论归纳总结: 边边边公理:三边对应相等的两个三角形全等探究2:如何用符号语言表示边边边公理呢?师生活动:学生探讨,试写出表示边边边公理的符号语言,师巡视后在班内形成标准表达先让出错的学生写,然后标准用符号语言表达:在ABC和ABC中ABCABCSSS设计意图:教师引导学生动手作图、剪图

6、、比拟图的过程,感悟根本领实的正确性,获得三角形全等的“边边边判定方法在概括根本领实的过程中,引导学生透过现象看本质,锻炼学生用数学语言概括结论的能力三初步应用,稳固知识问题:我们曾经做过这样的实验:将三根木条钉成一个三角形木架,这个三角形木架的形状、大小就不变了你能解释其中的道理吗?师生活动:学生用“边边边判定方法进行解释, 感悟数学源于生活,数学又效劳于生活设计意图:用所学知识解释生活现象,进一步体会判定方法的作用,感悟数学的应用价值例1:如下图的三角形钢架中,AB =AC ,AD 是连接点A 与BC 中点D 的支架求证ABD ACD 板书如下:证明:D是BC的中点BD=DC线段中点的定义

7、在ABD和ACD中ABDACDSSS师生活动:学生讨论思路后,让一个学生口述步骤,教师板演,强调每一步注明理由设计意图:运用“边边边判定方法证明简单的几何问题,感悟判定方法的简捷性,体会证明过程的标准性例2:用尺规作一个角等于角ABO:AOBEDEAOB求作: AOB=AOB 解:画法 1画射线OB;2以点O为圆心,任意长为半径画弧,交OA于点D,交OB于点E ; 3以点O为圆心,以OD长为半径画弧,交OB于点E ;4以点E为圆心,以ED长为半径画弧,交前弧于点A ;5连接线段OAAOB就是所求的角师生活动:教师指导学生用尺规作图.学生动手作图,教师巡视指导然后教师提出问题:为什么这样作出的两

8、个角是相等的?理由:连接DE,AE在DOE和AOE中DOEAOESSSAOB=AOB设计意图:让学生运用“SSS条件进行尺规作图,同时体会作图的合理性,增强作图技能四课堂小结教师与学生一起回忆本节课所学习的主要内容,请学生答复以下问题:1什么是边边边公理?三角形具有什么性?边边边公理是如何得到的的?2你是怎样用边边边公理进行计算和说理的?设计意图:通过问题对本节课内容进行梳理,稳固边边边公理及应用六布置作业课本P43页习题12.2第1、9题.五、目标检测1.当ABC和DEF具备 条件时,ABCDEF. ( )A. 所有的角相等 B.三条边分别对应相等 C.面积相等 D.周长相等2.如图,B、D为AE上的两点,AD=BE,AC=DF,BC=EF,那么以下说法中错误的选项是 ADBEFCA. ACDF B.C=F C. BCEF D.A=E 3.如图,AF=CD, AB=ED,EF=BC,那么ABCDEF的理由是_.AFCDBE4.如图,假设OA=OB,AC=BC,ACO=30O,那么ACB=_.AOCB5.如图,AB=AC,AD=AE,BD=EC,那么ABD_,ABE_CEDBA6.如图,在ABC和DCB中,AC与BD相交于点O, AB = DC,AC = BD. 求证: ABCDCB;7.如图,AC、BD相交于O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论