刍谈初中数学教学结尾艺术_第1页
刍谈初中数学教学结尾艺术_第2页
刍谈初中数学教学结尾艺术_第3页
刍谈初中数学教学结尾艺术_第4页
刍谈初中数学教学结尾艺术_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、刍谈初中数学教学结尾艺术吕小保摘自:?北大附中附小网校?布局合理、结构完美的课堂教学。不仅要有扣人心弦的“序曲 ,引人人胜的主旋律 ,还要有回味无穷的“尾声 ,以到达前后浑然一体的美妙境界。在数学教学中 ,很多教师都精心设计每节课的引言 ,并总结出许多行之有效的课堂教学的启导方法 ,然而 ,却有不少教师对课堂教学的结尾没有给予足够的重视 ,以致出现了教育教学的随意性 ,即“讲到那里 ,就在那里歇的教学现状 ,使得一节课给人一种“虎头蛇尾的感觉。久而久之 ,还会使学生对数学课的学习产生厌倦情绪。由此可见 ,对于每一堂数学课 ,良好的开端固然重要 ,但结尾的作用同样不可无视。1、课堂教学结尾的作用

2、课堂结尾是教师在数学课堂任务终结阶段 ,引导学生对知识与技能、过程与方法、情感态度与价值观的再认识。再总结、再实践、再升华的教学行为方式。数学课堂小结是数学课堂教学的有机组成局部 ,它既是本堂课的总结和延伸 ,又是后续学习的根底和准备。针对不同的课堂教学类型 ,根据不同的教学内容和要求 ,精心设计出与之匹配的结尾 ,可收到事半功倍的效果。1.1归纳整理知识方法的功能在一堂课的结尾之际 ,通过教师有意识地穿针引线 ,提纲挚领地将本节课甚至前几节课的教学内容进行简明扼要的梳理、概括 ,便于学生抓住教学内容的重点 ,将所学的知识系统化 ,并能使新知识方法牢固地注人学生的认知结构中 ,使之在学生头脑里

3、留下一个深刻的印象 ,让学生体验到掌握新知识的喜悦。因此 ,可以这么说 ,如果把一堂课喻为一幅画 ,那么结尾就犹如画龙点睛之笔。1.2反应教学信息的功能学生对老师所教新知识的理解往往只是外表的 ,假设在课堂结尾时 ,从不同的角度精心设计几个针对新知识的小问题让学生答复 ,可充分了解学生对新知识的掌握情况 ,从而有利于教师及时地进行教学调控 ,为下一堂课的教学目标确立和教学方法改良提供研究素材。同时 ,教师对学生的答复进行讲评的过程 ,有利于学生进一步掌握和理解新知识 ,从而真正圆满地完成一节课的教学任务。1.3迁移知识的功能教学知识内在的逻辑顺序和学生的认知规律决定了教学必须是一个循序渐进、环

4、环相扣的有序过程。在课堂教学行将结束时 ,提出与本节和后续内容相关的问题 ,让学生带着浓厚的问题离开课堂 ,对活泼学生思维、开阔学生视野、开展学生智能 ,都是很有价值的。联系课堂内外 ,因势利导 ,把课堂上不能解决的问题提出来 ,使学生充分探究、深人分析直至最终解决问题 ,并获得成功的喜悦 ,也有利于学生把好的学习方法迁移到新的知识上。从这个意义上讲 ,课堂教学的目标就是“为迁移而教 ,为迁移而学。2、课堂教学结尾的一般形式2.1归纳总结式为了使学生对所学知识方法有一个全面系统的了解和认识 ,教师往往在课堂结尾时利用简洁准确的语言、文字、表格或图示将一堂课(或包括前几堂课)所学的主要内容、知识

5、结构进行总结归纳。这种小结应能准确地抓住每一个知识点的外在实质和内在的完整性 ,从而有利于学生掌握知识的重点和知识的系统性。如 ,在教授“直线与圆的位置关系时 ,可小结为:(l)填表:直线与圆的三种位置关系。(2)如何判断直线与圆的位置关系?上述小结中 ,既有对本节课重点知识的总结 ,又有方法上的总结。像这样以表格的形式进行高度的概括 ,以进行归纳总结的结尾方法 ,形象直观 ,易于学生形成知识网络 ,加深对知识的理解和方法的总结 ,进一步突出教学重点和难点 ,便于学生从整体上系统把握知识要点 ,培养他们的综合概括能力。2.2问题练习式新课结束后 ,教师根据教学实际和传授的内容 ,抓住重点难点

6、,精心设计一些习题 ,通过组织学生练习的形式结束本课。这样 ,既能使学生所学的根底知识得到应用和强化 ,又可使课堂教学效果得到及时反应 ,便于教师具体指导学生的学习活动。如 ,“不等式的性质教学 ,学生一看教学内容比拟简单 ,且临近下课了 ,容易产生松懈情绪。假设教师仍用总结归纳式结尾的方法 ,单纯强调性质 ,那么不易被学生接受。此时 ,教师需要将内容巧妙地化为富有思考性的问题进行小结。如设置以下系列的问题串:(1)将不等式mxm的两边都除以m ,得x1 ,那么m应满足什么条件?(2)下面的不等式变形错在哪里?将不等式2x4x的两边都除以x ,得24。(3)你能把不等式一1x变形为吗?学生在思

7、考上述问题的过程中 ,对不等式的性质进行再回忆、再思考、再比拟、再应用。不仅自然而然地系统总结了不等式的性质 ,而且对性质的理解与应用那么更能深人 ,远比让学生归纳总结这节课“你有何收获等述说性的小结更有实效。2.3比照比拟式心理学研究告诉我们 ,比拟是认识事物的重要方法 ,也是进行识记的有效方法 ,它可以帮助我们从事物之间的联系上来掌握记忆对象。比照比拟式的结尾方法 ,一般是将教学内容中那些意义相近或相异的内容进行比拟 ,同中求异 ,异中求同 ,培养学生的比拟鉴别能力。如在学习菱形的性质和判定后 ,学生易将菱形和矩形的性质与判定内容相混淆 ,因此 ,在菱形的教学结尾时 ,占用一点时间将两者的

8、概念、性质与判定进行比照与比拟 ,使学生加深对两者知识的印象 ,从而防止知识的负迁移现象。可小结为:(l)的平行四边形是矩形;的平行四边形是菱形。(2)填写矩形与菱形的性质:(3)矩形有哪些判定方法?菱形呢?2.4预设悬念式好的结尾 ,可以使学生急于想知道下面的内容 ,如章回小说 ,当情节开展到关键时刻时戛然而止 ,给读者造成强烈的悬念。教学结尾时运用此法 ,效果颇佳譬如 ,讲了“反比例函数一课结束时 ,设计小结为:(l)怎样判断函数是否为反比例函数?(2)比拟反比例函数与正比例函数之间的联系与区别?(3)既然 ,反比例函数与正比例函数之间有着这样一些联系与不同 ,那么反比例函数的图象、性质与

9、正比例函数的图象、性质又会有哪些异同呢?在前两问的比拟小结根底上 ,从函数知识的开展规律 ,巧设第(3)问 ,给学生留下悬念 ,引起学生欲罢不能的探究欲望 ,收到课虽尽而趣无穷的效果。2.5问题探究式即在课堂结束时 ,充分利用课堂 ,让学生适量进。行问题探究。问题探究 ,既是学生思维中的制高点 ,也是课堂教学中培养创造性人才的最高表达。如学习“中位线的小结:(l)你能将一张梯形纸片剪一刀 ,使得分成的两局部能拼成一个平行四边形吗?(2)梯形中位线的性质与三角形的中位线的性质有什么联系?在学生对三角形中位线的学习后 ,通过本例中的第(l)问 ,引导探索梯形中位线的性质 ,第(2)问引导学生继续探

10、究梯形中位线性质问题转化为三角形中位线进行研究。2。6交流评价式课堂教学应该给学生足够的时间和空间去思考和活动 ,同时要让学生有时机畅谈他们的体验、感受和收获 ,有时机表达他们的学习困惑和喜悦 ,提出建议和见解。因此 ,课堂小结中应关注学生的学习感受和体验。如“二次函数的小结:通过本节课的学习 ,你学会了什么?在学习过程中 ,你感触最深的是什么?你感到最困难的是什么?你想进一步探究的问题的是什么?这个小结具有开放性 ,不仅关注学生的学习结果 ,而且关注学生学习过程中的体验和感受 ,关注学生的情感态度和价值观。3、设计课堂结尾时应注意的问题俗话说:“万事开头难 ,结尾也精彩。好的结尾能给人以美的

11、艺术享受。但绝不是教师凭灵机一动就能到达的效果 ,而应该增强对结尾的设计意识。因此 ,教师进行教学结尾时应遵循以下原那么:3.1精要性原那么就是课堂结尾要做到内容精练 ,总结精彩。在时间安排_ ,要提倡向40分钟要效益 ,结尾一般以3-4分钟为宜 ,不能拖沓。在内容上 ,要牢牢把握住本节课的重点 ,设法通过我们的设计把学生的注意力集中到重点问题上 ,从而提高教学质量。3.2引导性原那么?数学课程标准(实验稿)?指出:学生是数学学习的主人 ,教师是数学学习的组织者、引导者与合作者。在教学过程中 ,学生学习的主动性和积极性是学习的内因 ,它决定了学生学习的质量。结尾有目标 ,但教师不是目标的“复述

12、者 ,不能包办代替 ,要把着眼点放在引导学生上。只有想方设法让学生多思考、多分析、多讨论 ,充分发挥其主观能动性 ,把教师的主导作用和学生的主体作用有机地结合起来 ,才能发挥课堂结尾的作用。3.3鼓励性原那么语文课本中的文章都是精选的比拟优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费力,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的为难局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见,如果有目的、有方

13、案地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和开展。课堂结尾 ,不应是简单的知识和方法的再现 ,而应是把学生引向新的目标 ,鼓励学生开展归纳和概括或尝试和探究。教师通过给出问题 ,将本节课的内容延伸到课外 ,让学生把问题作为课外研究的小的数学课题 ,因此能激起学生探究学习的兴趣和愿望 ,孕育学生数学学习的良好的情感态度。总之 ,教学是一门科学 ,又是一门艺术 ,而这种艺术的表现手法没有固定的公式可循。数学课教学的结尾也是如此教无定法 ,教材内容的丰富多样为我们提供了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论