数理统计的基础知识ppt课件_第1页
数理统计的基础知识ppt课件_第2页
数理统计的基础知识ppt课件_第3页
数理统计的基础知识ppt课件_第4页
数理统计的基础知识ppt课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第第16 章章 数理统计的根底知识数理统计的根底知识16.1 简单随机样本简单随机样本16.2 总体矩和样本矩总体矩和样本矩16.3 统计量及几个重要分布统计量及几个重要分布 总体:研讨对象的全体。总体:研讨对象的全体。通常指研讨对象的某项数量目的。通常指研讨对象的某项数量目的。组成总体的元素称为个体。组成总体的元素称为个体。16.1、简单随机样本、简单随机样本16.1.1 总体与个体总体与个体16.1.2 16.1.2 样本:来自总体的部分个体样本:来自总体的部分个体 1 1, , n n 假设满足:假设满足:1 1同分布性:同分布性: i i,i=1,ni=1,n与总体同分布与总体同分布.

2、 .2 2独立性:独立性: 1 1, , n n 相互独立;相互独立; 那么称之为容量为那么称之为容量为n n 的简的简单随机样本,简称样本。单随机样本,简称样本。而称而称1 1, , n n 的一的一次实现为样本察看值,记次实现为样本察看值,记为为x1x1, ,xn xn 总体、样本、样本察看值的关系总体、样本、样本察看值的关系总体总体 样本样本 样本察看值样本察看值 实际分布实际分布 统计是从手中已有的资料统计是从手中已有的资料样本察看值,去推断样本察看值,去推断总体的情况总体的情况总体分布。样本是联络两者的桥梁总体分布。样本是联络两者的桥梁。总体分布决议了样本取值的概率规律,也就是样。总

3、体分布决议了样本取值的概率规律,也就是样本取到样本察看值的规律,因此可以用样本察看值本取到样本察看值的规律,因此可以用样本察看值去推断总体去推断总体16.2 总体矩、样本矩及其关系总体矩、样本矩及其关系16.2.1 总体矩总体矩1kkvE、k阶原点矩2() kkuEE、k阶中心矩把总体的各阶中心矩和原点矩统称为把总体的各阶中心矩和原点矩统称为总体矩总体矩1 样本的原点矩与样本均值样本的原点矩与样本均值111,niikn特别的,得样本均值111nkkiivn、原点矩16.2.2 样本矩样本矩122121012()(),niikukSnSS特别地,时得样本方差样本均方差标准差16.2.3 样本中心

4、矩与样本方差样本中心矩与样本方差112() ,nkkiiun、中心矩16.2.3 样本矩、总体矩及其相互联络样本矩、总体矩及其相互联络212.).nED定理16.1假设总体存在二阶矩,记,(,为来自总体的样本,则样本矩与总体矩有如下联系:212EDn); )22*22*22113),4)1()1niinESESnSn称 为 样 本 修 正 方 差例例16.1 16.1 从某班级的英语期末考试成果中,随机抽取从某班级的英语期末考试成果中,随机抽取1010名同窗的成果分别为:名同窗的成果分别为:100100,8585,7070,6565,9090,9595,6363,5050,7777,86861

5、 1试写出总体,样本,样本值,样本容量;试写出总体,样本,样本值,样本容量;2 2求样本均值,样本修正方差及二阶原点矩。求样本均值,样本修正方差及二阶原点矩。 样本: (1,2,3,10) 样本值:)x ,x ,x(n21=(100,85,70,65,90,95,63,50,77,86) 样本容量:样本容量:=10=1010111(2)(100+85+&+86)=78.11010iixx2*2222111()21.96.97.9 252.519niisxxn10222222211111(100857086 )6326.91010niiiivxxn例例16.2 设总体设总体有分布密度有分

6、布密度121002*21,1( )0.12.xxp xSS ,其它从中抽取样本( , ,)样本均值 的期望和方差;)样本方差与样本修正方差的期望解:分布密度为0110(1)(1)0Exx dxxx dx则01222101(1)(1)6Dxx dxxx dx6001nXD0XE12 , ,) )60099n1nES222 ) )61ES22 * * 其它, , , , , ,) )( (01x0 x10 x1x1xp16.3 统计量及几个重要分布16.3.1 统计量统计量定义:假设定义:假设g(1, , n )不含不含 未知未知 参参数数,称样本称样本1, , n 的函数的函数 g(1, , n

7、 )是总体是总体X的一个统计的一个统计量量,16.3.2 四类统计量及其分布四类统计量及其分布16.3.2.1 U统计量及其分布统计量及其分布2( ,),(0,1)/NUNUn 若则称为统计量16.3.2.2 2分布及其临界值分布及其临界值2221121.,(0,1),( ).niidniiNk定义设则称为自由度为n的分布2. 临界值表的构造和运用临界值表的构造和运用 设设 2(n),假设对于,假设对于 :0 1, 存在存在02 满足满足22,P那么那么称称2为为2( )n分布的上分布的上分位点分位点。22( ; )n 例例16.3 给定给定=0.05,自在度自在度n=25,求满足下面等式的临

8、界值求满足下面等式的临界值:2221, PP222:( ; )(0.05;25)37.652n解22112211(1; )(0.95;25)14.611PPn *222222(1)(1);nSnSn3 2统计量未知时,已知时?) )( ( ) )( (nX22n1i2i2 1.定义定义 假设假设N(0, 1), 2(n), 与与独立,那么独立,那么 ( )./tt nk称为自在度为称为自在度为n的的t分布。分布。 记为记为tt(n)16.3.2.3、t统计量及分布统计量及分布2.2.临界值表的构造和运用临界值表的构造和运用设设T Tt(n)t(n),假设对,假设对:0:01,00, 满足满足P

9、TPTt t=,那么称那么称t t为为t(n)t(n)的上侧分位点的上侧分位点t例例16.4 给定给定=0.05,自在度自在度n=20,求满求满足下面等式的临界值足下面等式的临界值:(1) , P ttP tt 22(2) , P ttP tt :(1)( ; )(0.05;20)1.7247ttnt解1.7247P ttP ttt 2(2)(; )(0.025;20)2.0862ttnt22.086t 3 t统计量及其分布统计量及其分布* (1)./tt nSn16.3.2.4 F统计量及其分布统计量及其分布1.定义定义 假设假设 2(n1), 2(n2), , 独立,那么独立,那么1122

10、/( ,)./nFF n nn 称为第一自在度为称为第一自在度为n1 ,第二自在度为,第二自在度为n2的的F分布分布2. F2. F分布临界值表分布临界值表对于对于:00100,满足满足PFPFF F=, 那么称那么称F F为为F(n1, n2)F(n1, n2)的的上侧上侧分位点;分位点;记为记为F F ; n1, n2 ); n1, n2 )F12211(1;,)( ;,)FFn nFn n注:注:例例16.5 给定给定=0.1,自在度自在度n1=10, n2=5,求满足下面等式的临界值求满足下面等式的临界值:21(1) (2) P FP F212(1)( ;,)(0.1;10,5)3.3Fn nF解 112211(2)(1;,)( ;,)12.52(0.1;5,10)Fn nFn nF(4)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论