版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 29 页 共 29 页第二章 二次函数第1课时 二次函数一、阅读课本:二、学习目标:1知道二次函数的一般表达式;2会利用二次函数的概念分析解题;3列二次函数表达式解实际问题三、知识点:一般地,形如_的函数,叫做二次函数。其中x是_,a是_,b是_,c是_四、基本知识练习1观察:y6x2;yx230x;y200x2400x200这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是_次一般地,如果yax2bxc(a、b、c是常数,a0),那么y叫做x的_2函数y(m2)x2mx3(m为常数) (1)当m_时,该函数为二次函数; (2)当m_时,该函数为一次函数3下列函数
2、表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数 (1)y13x2(2)y3x22x(3)yx (x5)2 (4)y3x32x2(5)yx五、课堂训练 1y(m1)x3x1是二次函数,则m的值为_2下列函数中是二次函数的是( ) AyxB y3 (x1)2Cy(x1)2x2Dyx3在一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为 s5t22t,则当t4秒时,该物体所经过的路程为( ) A28米B48米C68米D88米4n支球队参加比赛,每两队之间进行一场比赛写出比赛的场次数m与球队数n之间的关系式_5已知y与x2成正比例,并且当x1时,y3 求:(1)函
3、数y与x的函数关系式;(2)当x4时,y的值;(3)当y时,x的值6为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图)若设绿化带的BC边长为x m,绿化带的面积为y m2求y与x之间的函数关系式,并写出自变量x的取值范围六、目标检测 1若函数y(a1)x22xa21是二次函数,则( ) Aa1Ba±1Ca1Da1 2下列函数中,是二次函数的是( ) Ayx21Byx1CyDy 3一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式 4已知二次函数yx2bx3当x2时,y3,
4、求 这个二次函数解析式 第2课时 二次函数yax2的图象与性质一、阅读课本:二、学习目标:1知道二次函数的图象是一条抛物线;2会画二次函数yax2的图象;3掌握二次函数yax2的性质,并会灵活应用三、探索新知:画二次函数yx2的图象【提示:画图象的一般步骤:列表(取几组x、y的对应值;描点(表中x、y的数值在坐标平面中描点(x,y);连线(用平滑曲线)】列表:x3210123yx2描点,并连线由图象可得二次函数yx2的性质:1二次函数yx2是一条曲线,把这条曲线叫做_2二次函数yx2中,二次函数a_,抛物线yx2的图象开口_3自变量x的取值范围是_4观察图象,当两点的横坐标互为相反数时,函数y
5、值相等,所描出的各对应点关于_对称,从而图象关于_对称5抛物线yx2与它的对称轴的交点( , )叫做抛物线yx2的_ 因此,抛物线与对称轴的交点叫做抛物线的_6抛物线yx2有_点(填“最高”或“最低”) 四、例题分析例1 在同一直角坐标系中,画出函数yx2,yx2,y2x2的图象解:列表并填:x432101234yx2yx2的图象刚画过,再把它画出来x21.510.500.511.52y2x2归纳:抛物线yx2,yx2,y2x2的二次项系数a_0;顶点都是_; 对称轴是_;顶点是抛物线的最_点(填“高”或“低”) 例2 请在例1的直角坐标系中画出函数yx2,yx2, y2x2的图象列表:x32
6、10123yx2x432101234y=x2x432101234y2x2归纳:抛物线yx2,yx2, y2x2的二次项系数a_0,顶点都是_,对称轴是_,顶点是抛物线的最_点(填“高”或“低”) 五、理一理1抛物线yax2的性质图象(草图)开口方向顶点对称轴有最高或最低点最值a0当x_时,y有最_值,是_a0当x_时,y有最_值,是_2抛物线yx2与yx2关于_对称,因此,抛物线yax2与yax2关于_ 对称,开口大小_3当a0时,a越大,抛物线的开口越_; 当a0时,a 越大,抛物线的开口越_; 因此,a 越大,抛物线的开口越_,反之,a 越小,抛物线的开口越_六、课堂训练1填表:开口方向顶
7、点对称轴有最高或最低点最值yx2当x_时,y有最_值,是_y8x2当x_时,y有最_值,是_2若二次函数yax2的图象过点(1,2),则a的值是_3二次函数y(m1)x2的图象开口向下,则m_4如图, yax2 ybx2 ycx2 ydx2 比较a、b、c、d的大小,用“”连接 _七、目标检测1函数yx2的图象开口向_,顶点是_,对称轴是_, 当x_时,有最_值是_2二次函数ymx有最低点,则m_3二次函数y(k1)x2的图象如图所示,则k的取值 范围为_4写出一个过点(1,2)的函数表达式_第3课时 二次函数yax2k的图象与性质一、阅读课本:二、学习目标:1会画二次函数yax2k的图象;2
8、掌握二次函数yax2k的性质,并会应用;3知道二次函数yax2与y的ax2k的联系三、探索新知:在同一直角坐标系中,画出二次函数yx21,yx21的图象解:先列表x3210123yx21yx21描点并画图观察图象得:1开口方向顶点对称轴有最高(低)点最值yx2yx21yx212可以发现,把抛物线yx2向_平移_个单位,就得到抛物线yx21;把抛物线yx2向_平移_个单位,就得到抛物线yx213抛物线yx2,yx21与yx21的形状_四、理一理知识点1yax2yax2k开口方向顶点对称轴有最高(低)点最值a0时,当x_时,y有最_值为_;a0时,当x_时,y有最_值为_增减性2抛物线y2x2向上
9、平移3个单位,就得到抛物线_; 抛物线y2x2向下平移4个单位,就得到抛物线_ 因此,把抛物线yax2向上平移k(k0)个单位,就得到抛物线_; 把抛物线yax2向下平移m(m0)个单位,就得到抛物线_3抛物线y3x2与y3x21是通过平移得到的,从而它们的形状_,由此可得二次函数yax2与yax2k的形状_五、课堂巩固训练1填表函数草图开口方向顶点对称轴最值对称轴右侧的增减性y3x2y3x21y4x252将二次函数y5x23向上平移7个单位后所得到的抛物线解析式为_3写出一个顶点坐标为(0,3),开口方向与抛物线yx2的方向相反,形状相同的抛物线解析式_4抛物线y4x21关于x轴对称的抛物线
10、解析式为_六、目标检测1填表函数开口方向顶点对称轴最值对称轴左侧的增减性y5x23y7x212抛物线yx22可由抛物线yx23向_平移_个单位得到的3抛物线yx2h的顶点坐标为(0,2),则h_4抛物线y4x21与y轴的交点坐标为_,与x轴的交点坐标为_第4课时 二次函数ya(x-h)2的图象与性质一、阅读课本:二、学习目标:1会画二次函数ya(x-h)2的图象;2掌握二次函数ya(x-h)2的性质,并要会灵活应用;三、探索新知:画出二次函数y(x1)2,y(x1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性先列表:x432101234y(x1)2y(x1)2描点并画图 1观察
11、图象,填表:函数开口方向顶点对称轴最值增减性y(x1)2y(x1)22请在图上把抛物线yx2也画上去(草图) 抛物线y(x1)2 ,yx2,y(x1)2的形状大小_ 把抛物线yx2向左平移_个单位,就得到抛物线y(x1)2 ;把抛物线yx2向右平移_个单位,就得到抛物线y(x1)2 四、整理知识点 1yax2yax2kya (x-h)2开口方向顶点对称轴最值增减性(对称轴左侧)2对于二次函数的图象,只要a相等,则它们的形状_,只是_不同五、课堂训练1填表图象(草图)开口方向顶点对称轴最值对称轴右侧的增减性yx2y5 (x3)2y3 (x3)22抛物线y4 (x2)2与y轴的交点坐标是_,与x轴
12、的交点坐标为_3把抛物线y3x2向右平移4个单位后,得到的抛物线的表达式为_ 把抛物线y3x2向左平移6个单位后,得到的抛物线的表达式为_4将抛物线y(x1)x2向右平移2个单位后,得到的抛物线解析式为_5写出一个顶点是(5,0),形状、开口方向与抛物线y2x2都相同的二次函数解析式_六、目标检测1抛物线y2 (x3)2的开口_;顶点坐标为_;对称轴是_;当x3时,y_;当x3时,y有_值是_2抛物线ym (xn)2向左平移2个单位后,得到的函数关系式是y4 (x4)2,则 m_,n_3若将抛物线y2x21向下平移2个单位后,得到的抛物线解析式为_4若抛物线ym (x1)2过点(1,4),则m
13、_第5课时 二次函数ya(xh)2k的图象与性质一、阅读课本:二、学习目标:1会画二次函数的顶点式ya (xh)2k的图象;2掌握二次函数ya (xh)2k的性质;3会应用二次函数ya (xh)2k的性质解题三、探索新知:画出函数y(x1)21的图象,指出它的开口方向、对称轴及顶点、最值、增减性列表:x4321012y(x1)21由图象归纳:1函数开口方向顶点对称轴最值增减性y(x1)212把抛物线yx2向_平移_个单位,再向_平移_个单位,就得到抛物线y(x1)21四、理一理知识点yax2yax2kya (x-h)2ya (xh)2k开口方向顶点对称轴最值增减性(对称轴右侧)2抛物线ya (
14、xh)2k与yax2形状_,位置_五、课堂练习 1y3x2yx21y(x2)2y4 (x5)23开口方向顶点对称轴最值增减性(对称轴左侧)2y6x23与y6 (x1)210_相同,而_不同3顶点坐标为(2,3),开口方向和大小与抛物线yx2相同的解析式为( ) Ay(x2)23By(x2)23 Cy(x2)23Dy(x2)234二次函数y(x1)22的最小值为_5将抛物线y5(x1)23先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_6若抛物线yax2k的顶点在直线y2上,且x1时,y3,求a、k的值7若抛物线ya (x1)2k上有一点A(3,5),则点A关于对称轴对称点A的坐
15、标为_六、目标检测1开口方向顶点对称轴yx21y2 (x3)2y (x5)242抛物线y3 (x4)21中,当x_时,y有最_值是_3足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示( ) A B C D4将抛物线y2 (x1)23向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为_5一条抛物线的对称轴是x1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为_(任写一个)第6课时 二次函数yax2bxc的图象与性质一、阅读课本:二、学习目标:1配方法求二次函数一般式yax2bxc的顶点坐标、对称轴;2熟记二次函数yax2bxc的顶点坐
16、标公式;3会画二次函数一般式yax2bxc的图象三、探索新知:1求二次函数yx26x21的顶点坐标与对称轴 解:将函数等号右边配方:yx26x212画二次函数yx26x21的图象 解:yx26x21配成顶点式为_ 列表:x3456789yx26x213 用配方法求抛物线yax2bxc(a0)的顶点与对称轴四、理一理知识点:yax2yax2kya(xh)2ya(xh)2kyax2bxc开口方向顶点对称轴最值增减性(对称轴左侧)五、课堂练习 1用配方法求二次函数y2x24x1的顶点坐标2用两种方法求二次函数y3x22x的顶点坐标3二次函数y2x2bxc的顶点坐标是(1,2),则b_,c_4已知二次
17、函数y2x28x6,当_时,y随x的增大而增大;当x_时,y有_值是_六、目标检测1用顶点坐标公式和配方法求二次函数yx221的顶点坐标2二次函数yx2mx中,当x3时,函数值最大,求其最大值第7课时 二次函数yax2bxc的性质一、复习知识点:二、学习目标:1懂得求二次函数yax2bxc与x轴、y轴的交点的方法;2知道二次函数中a,b,c以及b24ac对图象的影响三、基本知识练习1求二次函数yx23x4与y轴的交点坐标为_,与x轴的交点坐标_2二次函数yx23x4的顶点坐标为_,对称轴为_3一元二次方程x23x40的根的判别式_4二次函数yx2bx过点(1,4),则b_5一元二次方程yax2
18、bxc(a0),0时,一元二次方程有_, 0时,一元二次方程有_,0时,一元二次方程_四、知识点应用 1求二次函数yax2bxc与x轴交点(含y0时,则在函数值y0时,x的值是抛物线与x轴交点的横坐标)例1 求yx22x3与x轴交点坐标 2求二次函数yax2bxc与y轴交点(含x0时,则y的值是抛物线与y轴交点的纵坐标) 例2 求抛物线yx22x3与y轴交点坐标3a、b、c以及b24ac对图象的影响 (1)a决定:开口方向、形状 (2)c决定与y轴的交点为(0,c) (3)b与共同决定b的正负性 (4)b24ac 例3 如图,由图可得:a_0b_0c_0_0 例4 已知二次函数yx2kx9 当
19、k为何值时,对称轴为y轴; 当k为何值时,抛物线与x轴有两个交点; 当k为何值时,抛物线与x轴只有一个交点五、课后练习 1求抛物线y2x27x15与x轴交点坐标_,与y轴的交点坐标为_ 2抛物线y4x22xm的顶点在x轴上,则m_ 3如图:由图可得:a_0b_0c_0b24ac_0六、目标检测1求抛物线yx22x1与y轴的交点坐标为_2若抛物线ymx2x1与x轴有两个交点,求m的范围3如图:由图可得:a _0 b_0c_0b24ac_0第8课时 二次函数yax2bxc解析式求法一、学习目标:1会用待定系数法求二次函数的解析式;2实际问题中求二次函数解析式二、课前基本练习1已知二次函数yx2xm
20、的图象过点(1,2),则m的值为_2已知点A(2,5),B(4,5)是抛物线y4x2bxc上的两点,则这条抛物线的对称轴为_3将抛物线y(x1)23先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为_4抛物线的形状、开口方向都与抛物线yx2相同,顶点在(1,2),则抛物线的解析式为_三、例题分析例1 已知抛物线经过点A(1,0),B(4,5),C(0,3),求抛物线的解析式例2 已知抛物线顶点为(1,4),且又过点(2,3)求抛物线的解析式例3 已知抛物线与x轴的两交点为(1,0)和(3,0),且过点(2,3) 求抛物线的解析式四、归纳用待定系数法求二次函数的解析式用三种方法:1已
21、知抛物线过三点,设一般式为yax2bxc2已知抛物线顶点坐标及一点,设顶点式ya(xh)2k3已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:ya(xx1)(xx2) (其中x1、x2是抛物线与x轴交点的横坐标)五、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?六、课堂训练1已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式2 已知二次函数的图象的顶点坐标为(2,3),且图
22、像过点(3,2),求这个二次函数的解析式3已知二次函数yax2bxc的图像与x轴交于A(1,0),B(3,0)两点,与 y轴交于点C(0,3),求二次函数的顶点坐标4如图,在ABC中,B90°,AB12mm,BC24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动,动点Q从点B开始沿边BC向C以4mm/s的速度移动,如果P、Q分别从A、B同时出发,那么PBQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围七、目标检测1已知二次函数的图像过点A(1,0),B(3,0),C(0,3)三点,求这个二次函数解析式第9课时 二次函数yax2bxc的性质一、阅读教科书:二、学习
23、目标:几何问题中应用二次函数的最值三、课前基本练习1抛物线y(x1)22中,当x_时,y有_值是_2抛物线yx2x1中,当x_时,y有_值是_3抛物线yax2bxc(a0)中,当x_时,y有_值是_四、例题分析:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化,当l是多少时,场地的面积S最大?五、课后练习1已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?2从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是h30t5t2小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?3
24、如图,四边形的两条对角线AC、BD互相垂直,ACBD10,当AC、BD的长是多少时,四边形ABCD的面积最大?4一块三角形废料如图所示,A30°,C90°,AB12用这块废料剪出一个长方形CDEF,其中,点D、E、F分别在AC、AB、BC上要使剪出的长方形CDEF面积最大,点E应造在何处?六、目标检测如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形当点E位于何处时,正方形EFGH的面积最小?第10课时 用函数观点看一元二次方程一、阅读课本:二、学习目标:1知道二次函数与一元二次方程的关系2会用一元二次方程ax2bxc0根的判别式b24ac判断
25、二次函数yax2bxc与x轴的公共点的个数三、探索新知1问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h20t5t2 考虑以下问题: (1)球的飞行高度能否达到15m?如能,需要多少飞行时间? (2)球的飞行高度能否达到20m?如能,需要多少飞行时间? (3)球的飞行高度能否达到20.5m?为什么? (4)球从飞出到落地要用多少时间?2观察图象: (1)二次函数yx2x2的图象与x轴有_个交点,则一元二次方程x2x20的根的判别式_0; (2)二次函数yx
26、26x9的图像与x轴有_个交点,则一元二次方程x26x90的根的判别式_0; (3)二次函数yx2x1的图象与x轴_公共点,则一元二次方程x2x10的根的判别式_0四、理一理知识1已知二次函数yx24x的函数值为3,求自变量x的值,可以看作解一元二次方程_反之,解一元二次方程x24x3又可以看作已知二次函数_的函数值为3的自变量x的值 一般地:已知二次函数yax2bxc的函数值为m,求自变量x的值,可以看作解一元二次方程ax2bxcm反之,解一元二次方程ax2bxcm又可以看作已知二次函数yax2bxc的值为m的自变量x的值2二次函数yax2bxc与x轴的位置关系: 一元二次方程ax2bxc0
27、的根的判别式b24ac (1)当b24ac0时抛物线yax2bxc与x轴有两个交点; (2)当b24ac0时 抛物线yax2bxc与x轴只有一个交点; (3)当b24ac0时 抛物线yax2bxc与x轴没有公共点五、基本知识练习1二次函数yx23x2,当x1时,y_;当y0时,x_2二次函数yx24x6,当x_时,y33如图,一元二次方程ax2bxc0的解为_4如图一元二次方程ax2bxc3 的解为_5如图填空:(1)a_0(2)b_0(3)c_0(4)b24ac_0六、课堂训练1特殊代数式求值: 如图看图填空:(1)abc_0(2)abc_0(3)2ab _0如图2ab _04a2bc_02
28、利用抛物线图象求解一元二次方程及二次不等式 (1)方程ax2bxc0的根为_;(2)方程ax2bxc3的根为_;(3)方程ax2bxc4的根为_;(4)不等式ax2bxc0的解集为_;(5)不等式ax2bxc0的解集为_; (6)不等式4ax2bxc0的解集为_七、目标检测根据图象填空:(1)a_0;(2)b_0;(3)c_0;(4)b24ac_0;(5)abc_0;(6)abc_0;(7)2ab_0;(8)方程ax2bxc0的根为_;(9)当y0时,x的范围为_;(10)当y0时,x的范围为_;八、课后训练1已知抛物线yx22kx9的顶点在x轴上,则k_2已知抛物线ykx22x1与坐标轴有三
29、个交点,则k的取值范围_3已知函数yax2bxc(a,b,c为常数,且a0)的图象如图所示,则关于x的方程 ax2bxc40的根的情况是( ) A有两个不相等的正实数根B有两个异号实数根 C有两个相等实数根D无实数根4如图为二次函数yax2bxc的图象,在下列说法中:ac0;方程ax2bxc0的根是x11,x23;abc0;当x1时,y随x的增大而增大正确的说法有_(把正确的序号都填在横线上)第11课时 实际问题与二次函数商品价格调整问题一、阅读课本:二、学习目标:1懂得商品经济等问题中的相等关系的寻找方法;2会应用二次函数的性质解决问题三、探索新知某商品现在的售价为每件60元,每星期可卖出3
30、00件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_件,实际卖出_件,设商品的利润为y元 (2)设每件降价x元,则每星期多卖_件,实际卖出_件四、课堂训练1某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100x)件,应如何定价才能使利润最大?2蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价P(元/千克)的关系如下表:上市时间x/(月份
31、)123456市场售价P(元/千克)10.597.564.53这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图)(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少? (收益市场售价种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满当每个房间每天的定价每增加10元时,就会有一个房间空间对有游客入住的房间,宾馆需对每个
32、房间每天支出20元的各种费用设每个房间每天的定介增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?第12课时 实际问题与二次函数一、阅读课本:二、学习目标:1会建立直角坐标系解决实际问题;2会解决桥洞水面宽度问题三、基本知识练习1以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系时,可设这条抛物线的关系式为_2拱桥呈抛物线形,其函数关系式为yx2,当拱桥下水位线在AB位置时,水面宽为12m,这时水面离桥拱顶端的高度h是( ) A3mB2mC4mD9m3有一抛物线拱桥,已知水位线在AB位置时,水面的宽为4米,水位上升4米,就达到警戒线CD,这时水面宽为4米若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M处?四、课堂练习 1一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探秘书海:字里行间的智慧
- 一年来的财务工作总结
- 2023年员工三级安全培训考试题及完整答案(全优)
- 2023年-2024年项目安全培训考试题含答案(精练)
- 2023-2024年项目部安全管理人员安全培训考试题原创题
- 2023-2024年企业主要负责人安全培训考试题答案可打印
- 新生军训心得体会400字10篇
- 科学实验教学
- 药物代谢预测与智能模拟研究-洞察分析
- 铁路运营成本控制-洞察分析
- 通力电梯KCE电气系统学习指南
- 风电场岗位任职资格考试题库大全-下(填空题2-2)
- 九年级数学特长生选拔考试试题
- 幼儿园交通安全宣传课件PPT
- 门窗施工组织设计与方案
- 健身健美(课堂PPT)
- (完整版)财务管理学课后习题答案-人大版
- 锚索试验总结(共11页)
- 移动脚手架安全交底
- 人教版“课标”教材《统计与概率》教学内容、具体目标和要求
- 矩形钢板水箱的设计与计算
评论
0/150
提交评论