版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第8讲 专题8二次函数与平行四边形函数与平行四边形问题,函数与图形综合是中考数学中常见的综合问题,核心考察学生的数形结合、分类讨论、运算处理等能力,是拉开分数的重要题型。本期专题就中考中函数与图形综合的常见题型进行讲解,并对解题方法和步骤进行了总结【例一】如图,在平面直角坐标系xOy中,抛物线y=(xm)2m2+m的顶点为A,与y轴的交点为B,连结AB,ACAB,交y轴于点C,延长CA到点D,使AD=AC,连结BD作AEx轴,DEy轴(1)当m=2时,求点B的坐标;(2)求DE的长?(3)设点D的坐标为(x,y),求y关于x的函数关系式?过点D作AB的平行线,与第(3)题确定的函数图象的另一个
2、交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?【例二】已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;AABBOOxxyy图图(3)连接OA、AB,如图,在x轴下方的抛物线上是否存在点P,使得OBP与OAB相似?若存在,求出P点的坐标;若不存在,说明理由。【例三】如图,在坐标系xOy中,ABC是等腰直角三角形,BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx2的图象过C点(1)求抛物线的解析
3、式;(2)平移该抛物线的对称轴所在直线l当l移动到何处时,恰好将ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由【例四】如图,抛物线y=ax2+bx+3与x轴相交于点A(1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF(1)求抛物线的解析式;(2)当四边形ODEF是平行四边形时,求点P的坐标;(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这
4、条直线的解析式(不必说明平分平行四边形面积的理由)【例五】如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,),与x轴的另一个交点为C(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且BDA=DAC,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE判断四边形OAEB的形状,并说明理由;点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当BMF=MFO时,请直接写出线段BM的长【例六】如图,抛物线经过三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
5、xyAOCB(第6题图)(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.7(本题14分)综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q(1)求点A,B,C的坐标。(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。(3)当点P在线段EB上运动时,是否存在点 Q,使BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。8.如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市公共环保设施建设拆迁协议
- 食品安全卫生调查问卷
- 新疆克孜勒苏柯尔克孜自治州(2024年-2025年小学五年级语文)统编版质量测试(上学期)试卷及答案
- 甘肃省酒泉市(2024年-2025年小学五年级语文)统编版综合练习(下学期)试卷及答案
- 关于在事务所实习报告范文锦集六篇
- 阑尾炎的症状及治疗
- 工程监理聘用合同
- 五年级数学(小数四则混合运算)计算题专项练习及答案汇编
- 人体解剖生理课模板
- 胸骨X射线片观察异常
- 交警进校园宣传安全
- 品牌卡通IP设计方法
- 审计部工作总结及计划
- 山东开放大学2024《控制系统CAD》形考作业1-3答案
- 小学生心肺复苏培训意义
- 幼儿体适能通用课件
- 大数据专业职业规划
- 人教版九年级上学期期中考试数学试卷及答案解析(共5套)
- 逆境中的积极心态与成就
- 山东省2023年高考物理模拟(一模、二模)试题知识点训练:电磁学解答题
- 门诊健康宣教 课件
评论
0/150
提交评论