版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)m1m2与运动方向和有无摩擦(相同)无关,及与两物体放置的方式都无关。平面、斜面、竖直都一样。只要两物体保持相对静止记住:N=(N为两物体间相互作用力), 一起加速
2、运动的物体的分子m1F2和m2F1两项的规律并能应用讨论:F10;F2=0 N=m2m1F F10;F20N=(就是上面的情况)F=F=F=F1F2 m1m2 N1N2(为什么) N5对6=(m为第6个以后的质量) 第12对13的作用力 N12对13=2.水流星模型(竖直平面内的圆周运动是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。(圆周运动实例) 火车转弯 汽车过拱桥、凹桥3飞机做俯冲运动时,飞行员对座位的压力。物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水
3、流星、杂技节目中的飞车走壁等)。万有引力卫星的运动、库仑力电子绕核旋转、洛仑兹力带电粒子在匀强磁场中的偏转、重力与弹力的合力锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h,内外轨间距L,转弯半径R。由于外轨略高于内轨,使得火车所受重力和支持力的合力F合提供向心力。(是内外轨对火车都无摩擦力的临界条件)当火车行驶速率V等于V0时,F合=F向,内外轨道对轮缘都没有侧压力当火车行驶V大于V0时,F合F向,内轨道对轮缘有侧压力,F合-N=即当火车转弯时行驶速率不等于V0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。火车提速靠增
4、大轨道半径或倾角来实现(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:受力:由mg+T=mv2/L知,小球速度越小,绳拉力或环压力T越小,但T的最小值只能为零,此时小球以重力提供作向心力. 结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。能过最高点条件:VV临(当VV临时,绳、轨道对球分别产生拉力、压力)不能过最高点条件:V tg物体静止于斜面 VB=所以AB杆对B做正功,AB杆对A做负功 5通过轻绳连接的物体在沿绳连接方向(可直可曲),具有共同的v和a。特别注意:两
5、物体不在沿绳连接方向运动时,先应把两物体的v和a在沿绳方向分解,求出两物体的v和a的关系式,被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。讨论:若作圆周运动最高点速度 V0m2时,v10,v20 v1与v1方向一致;当m1m2时,v1v1,v22v1 (高射炮打蚊子) 当m1=m2时,v1=0,v2=v1 即m1与m2交换速度 当m1m2时,v10 v2与v1同向;当m1m2时,v22v1B初动量p1一定,由p2=m2v2=,可见,当m1m2时,p22m1v1=2p1C初动能EK1一定,当m1=m2时,EK2=EK1完全非弹性碰撞应满足:一动一静的完全非弹性碰撞(子弹打击木块模
6、型)是高中物理的重点。特点:碰后有共同速度,或两者的距离最大(最小)或系统的势能最大等等多种说法.(主动球速度上限,被碰球速度下限)讨论:E损 可用于克服相对运动时的摩擦力做功转化为内能E损=fd相=mgd相=一= d相=也可转化为弹性势能;转化为电势能、电能发热等等;(通过电场力或安培力做功)由上可讨论主动球、被碰球的速度取值范围“碰撞过程”中四个有用推论推论一:弹性碰撞前、后,双方的相对速度大小相等,即: u2u1=12推论二:当质量相等的两物体发生弹性正碰时,速度互换。推论三:完全非弹性碰撞碰后的速度相等ABv0推论四:碰撞过程受(动量守恒)(能量不会增加)和(运动的合理性)三个条件的制
7、约。v0AB1Av0碰撞模型vsMv0L其它的碰撞模型: 证明:完全非弹性碰撞过程中机械能损失最大。证明:碰撞过程中机械能损失表为:E=m112+m222m1u12m2u22由动量守恒的表达式中得: u2=(m11+m22m1u1)代入上式可将机械能的损失E表为u1的函数为:E=u12u1+(m112+m222)( m11+m22)2这是一个二次项系数小于零的二次三项式,显然:当 u1=u2=时,即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值 Em=m112+m222子弹打木块模型:物理学中最为典型的碰撞模型 (一定要掌握)子弹击穿木块时,两者速度不相等;子弹未击穿木块时,两者速度相等
8、.这两种情况的临界情况是:当子弹从木块一端到达另一端,相对木块运动的位移等于木块长度时,两者速度相等例题:设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。从动量的角度看,子弹射入木块过程中系统动量守恒: 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d对子弹用动能定理:对木块用动能定理:、相减得:式意义:fd恰好等于系统动能的损
9、失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。 由上式不难求得平均阻力的大小:至于木块前进的距离s2,可以由以上、相比得出:从牛顿运动定律和运动学公式出发,也可以得出同样的结论。试试推理。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:一般情况下,所以s2(11)安培力做功安培力所做的功对应着电能与其它形式的能的相互转化,即W安=E电,安培力做正功,对应着电能转化为其他形式的能(如电动
10、机模型);克服安培力做功,对应着其它形式的能转化为电能(如发电机模型);且安培力作功的绝对值,等于电能转化的量值, WF安dBILd 内能(发热)(12)洛仑兹力永不做功洛仑兹力只改变速度的方向,不改变速度的大小。(13)光学光子的能量: E光子=h;一束光能量E光=Nh(N指光子数目)在光电效应中,光子的能量h=W+(14)原子物理原子辐射光子的能量h=E初E末,原子吸收光子的能量h= E末E初爱因斯坦质能方程:Emc2(15)能量转化和守恒定律对于所有参与相互作用的物体所组成的系统,其中每一个物体的能量数值及形式都可能发生变化,但系统内所有物体的各种形式能量的总合保持不变功和能的关系贯穿整
11、个物理学。现归类整理如下:常见力做功与对应能的关系常见的几种力做功能量关系数量关系式力的种类做功的正负对应的能量变化情况重力mg+重力势能EP减小mgh=EP增加弹簧的弹力kx+弹性势能E弹性减小W弹=E弹性增加分子力F分子+分子势能E分子减小W分子力=E分子增加电场力Eq+电势能E电势减小qU =E电势增加滑动摩擦力f内能Q增加fs相对= Q 感应电流的安培力F安培电能E电增加W安培力=E电合力F合+动能Ek增加W合=Ek减小重力以外的力F+机械能E机械增加WF=E机械减小汽车的启动问题: 具体变化过程可用如下示意图表示关键是发动机的功率是否达到额定功率,恒定功率启动速度VF=a=当a=0即F=f时,v达到最大vm保持vm匀速变加速直线运动匀速直线运动恒定加速度启动a定=即F一定P=F定v即P随v的增大而增大当a=0时,v达到最大vm,此后匀速当P=P额时a定=0,v还要增大F=a=匀
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 15883-3:2024 EN Washer-disinfectors - Part 3: Requirements and tests for washer-disinfectors employing thermal disinfection for human waste containers
- 劳动合同纠纷仲裁代理词撰写指南
- 美国专有技术转让合同案例
- 企业合同权益转让协议书案例
- 房地产代理销售合同书范文示例
- 工程项目管理合同的关键条款
- 代售协议书范例
- 店面临时租赁合同书
- 2024宽带接入电信服务协议范本
- 小产权住宅购买协议书
- 2023年山东省春季高考数学试卷(解析版)
- 抚州市乐安县乡镇街道社区行政村统计表
- 园林空间-课件
- 《高等数学》全册教案教学设计
- 市场主体迁移申请书
- 微观交易结构系列之二:不容忽视的交易成本量化个股隐性成本
- 商会各类岗位职责
- 四年级上册英语课件- M3U2 Around my home (Period 3) 上海牛津版试用版(共18张PPT)
- 酒店装饰装修工程验收表
- 新北师大版六年级上册数学全册教案(教学设计)
- 调研报告:关于棚户区改造现状、存在问题及对策建议
评论
0/150
提交评论