两个向量的数量积说课稿_第1页
两个向量的数量积说课稿_第2页
两个向量的数量积说课稿_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、两个向量的数量积各位老师,大家好!今天我说课的题目是两个向量的数量积,下面我将通过教材分析、教学目标分析、教学重难点分析、教法与学法分析、课堂设计五个方面逐一加以分析和说明。一、教材分析1、教材的地位和作用两个向量的数量积是人教出版社高中数学第二册下B、第九章第五节中的内容,空间两个向量的夹角、数量积是高中数学向量的重要内容,也是高考的重要考查内容。从知识的网络结构上看,空间向量夹角、数量积既是平面向量夹角、数量积概念的延续和拓展,又是后续空间向量数量积的计算坐标化和空间向量在立体几何中应用的教学基础。2、学情分析本节课授课对象是高二年级的学生,他们已熟知了实数的运算体系,理解了向量的概念,对

2、向量的加法、减法及数乘运算都应该较熟练,具备了功等物理知识,并且通过前面的学习初步体会了研究向量运算的一般方法。3、教学内容本节内容分为四个课时,本课是第四个课时二、教学目标根据上述教材分析,考虑到学生已有的认知心理特征,制定如下教学目标:1. 知识目标:掌握空间向量夹角和模的概念及表示方法;掌握空间向量的数量积及其运算律。2. 能力目标:体会类比和归纳的数学思想,并能利用两个向量的数量积公式解决立体几何中的一些简单问题。3. 情感目标:激发学生的学习热情和求知欲,培养严谨的学习态度以及空间想象的能力。三、教学重点和难点本着课程标准,在吃透教材基础上,我确立了如下教学重点和难点:教学重点:空间

3、两个向量的夹角、数量积的概念、计算方法及其应用。教学难点:空间向量数量积的几何意义以及立体几何问题的转化。下面,为了讲清楚重点、难点,使学生能达到本节课设定的教学目标,我再从教法上谈谈:四、教法分析1.本节属于概念教学,可采用以语言传递信息、分析概念的讲授法。2. 本节涉及到一些比较抽象的概念,可以借助多媒体,利用三维动态演示,来提高学生对概念的理解。3. 在重点和难点上,采用举例的方法来提高学生的实际解题能力。4. 通过知识对比来加强学生的知识迁移能力,顺便对已学过知识的复习。最后我来具体谈一谈这节课的教学过程:五、教学过程学生是认知的主体,遵循学生的认知规律和本节课的特点,我设计了如下的教

4、学过程:1. 复习旧课,引入新课1 )让学生回顾平面向量数量积及其运算律。1定义2 夹角3 几何意义:数量积a.b 等于 a 的长度 | a| 与 b 在 a 的方向上的投影 | b|cos 的乘积。4 性质5 运算律2 )举两个实际例子进行练习,并引出空间两个向量数量积课题。设计意图:从学生已有认知平面向量相关知识出发,为类比出空间向量夹角和数量积概念做铺垫。2. 运用例子,理解概念,说明定义1、两向量夹角的定义已知两个非零向量 a 、b,在空间任取一点 O,做 OA=a 、 OB=b,则 AOB ,叫做向 a 与 b 的夹角,记作 <a ,b >。通常规定, 0 ( a,b )

5、 180°,在这个规定下,两个向量的夹角就被唯一确定了,并且 <a, b>=<b,a>。如果 <a,b>=90°,则称 a 与 b 互相垂直,并记作a, b 垂直。2 、模长的定义设 OA=a,则有向线段 OA的长度叫做向量a 的长度或模。记作 | a| 。3 、数量积已知空间两个向量a,b, 则 |a| |b|cos<a,b>叫做向量 a, b 的数量积,记作a. b。即: a.b =| a| b|cos< a,b >.4 、射影,利用幻灯片动态立体的展示射影的形成。(形象直观,加深印象)5. 通过类比平面向量的

6、性质和运算律,直接得出空间向量的性质运算律。3. 提出问题,加深理解1 )如何理解零向量的方向?2 )空间向量的数量积满足结合律吗? 即(a ·b) ·c=a·(b ·c) 吗 ?为什么?4. 例题讲解讲解课本中的例题,让学生初步感知空间向量数量积的应用,以及在解决立体几何问题时比传统方法的优越之处。5. 课堂练习 39 页练习题通过前面有关概念,解题步骤的讲解,接下来让学生亲自实践,自觉运用所学知识与解题思想,从而将知识化为自己所有。rrrr r的夹角都是rrr1已知向量 ab ,向量 c 与a, b60o ,且 | a |1,|b |2,| c | 3 ,rr2rrr2rrrr试求:( 1) (ab);( 2) (a2bc);(3) (3a2b)(b3c)2让学生尝试做课后练习1 和 3 题,并进行随机提问。设计意图:第 1 题是为了巩固学生对向量性质和运算律的记忆。后两道是为了让学生体会

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论