2019届高考数学一轮复习 第九章 解析几何 9.3 圆的方程课件 文 新人教B版_第1页
2019届高考数学一轮复习 第九章 解析几何 9.3 圆的方程课件 文 新人教B版_第2页
2019届高考数学一轮复习 第九章 解析几何 9.3 圆的方程课件 文 新人教B版_第3页
2019届高考数学一轮复习 第九章 解析几何 9.3 圆的方程课件 文 新人教B版_第4页
2019届高考数学一轮复习 第九章 解析几何 9.3 圆的方程课件 文 新人教B版_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、19 9. .3 3圆的方程圆的方程-2-知识梳理双基自测21自测点评1.圆的定义和圆的方程 定点 定长 D2+E2-4F0 -3-知识梳理双基自测自测点评212.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)drM在圆外,即(x0-a)2+(y0-b)2r2M在;(2)d=rM在圆上,即(x0-a)2+(y0-b)2=r2M在;(3)drM在圆内,即(x0-a)2+(y0-b)22. 答案解析关闭D-7-知识梳理双基自测自测点评234154.(2017湖南邵阳一模)已知点A(-1,4),B(3,-2),则以AB为直径的圆的标准方

2、程为. 答案解析解析关闭以AB为直径的圆的方程为(x+1)(x-3)+(y-4)(y+2)=0,整理得(x-1)2+(y-1)2=13. 答案解析关闭(x-1)2+(y-1)2=13-8-知识梳理双基自测自测点评234155.圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2 ,则圆C的标准方程为. 答案解析解析关闭 答案解析关闭-9-知识梳理双基自测自测点评1.求圆的标准方程,一定要抓住圆的圆心和半径两个核心要素.2.配方法在圆的一般方程化为标准方程时起关键作用,因此要熟练掌握.3.求轨迹方程时,一定要结合已知条件进行检验,以防漏解或增解.-10-考点1考点2考点3例

3、1(1)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2 B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2(2)经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6的圆的方程为.思考求圆的方程有哪些常见方法?答案: (1)B(2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0 -11-考点1考点2考点3解析: (1)(方法一)设出圆心坐标,根据该圆与两条直线都相切列方程即可.即|a|=|a-2|,解得a=1,故圆C的方程为(x-1)2+(y

4、+1)2=2.(方法二)题目给出的圆的两条切线是平行线,故圆的直径就是这两条平行线之间的距离 ;圆心是直线x+y=0被这两条平行线所截线段的中点,直线x+y=0与直线x-y=0的交点坐标是(0,0),与直线x-y-4=0的交点坐标是(2,-2),故所求圆的圆心坐标是(1,-1),所求圆C的方程是(x-1)2+(y+1)2=2.-12-考点1考点2考点3(方法三)作为选择题也可以验证解答.圆心在x+y=0上,排除选项C,D,再验证选项A,B中圆心到两直线的距离是否等于半径2即可.(2)设圆的方程为x2+y2+Dx+Ey+F=0,将P,Q两点的坐标分别代入得又令y=0,得x2+Dx+F=0.设x1

5、,x2是方程的两根,由|x1-x2|=6可得D2-4F=36,由解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.-13-考点1考点2考点3解题心得求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:圆心在过切点且垂直切线的直线上;圆心在任一弦的中垂线上;两圆内切或外切时,切点与两圆圆心共线;(2)代数法,即设出圆的方程,用待定系数法求解.-14-考点1考点2考点3对点训练对点训练1(1)过点A

6、(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为.(2)(2017河南百校联盟)经过点A(5,2),B(3,-2),且圆心在直线2x-y-3=0上的圆的方程为.答案: (1)(x-3)2+y2=2(2)(x-2)2+(y-1)2=10 -15-考点1考点2考点3-16-考点1考点2考点3-17-考点1考点2考点3-18-考点1考点2考点3 解 (1)设P(x,y),圆P的半径为r,则y2+2=r2,x2+3=r2.故y2+2=x2+3,即y2-x2=1.故点P的轨迹方程为y2-x2=1.(2)设P的坐标为(x0,y0),因此圆P的方程为x2+(y-1)2=3;-19-考

7、点1考点2考点3当y0=x0-1时,因此圆P的方程为x2+(y+1)2=3.综上所述,圆P的方程为x2+(y1)2=3.-20-考点1考点2考点3解题心得1.求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.2.求与圆有关的轨迹问题时,题目的设问有两种常见形式,作答也应不同.若求轨迹方程,则把方程求出化简即可;若求轨迹,则必须根据轨迹方程,指出轨迹是什么曲线.-21-考点1考点2考点3对点训练对点训

8、练2已知点A(-1,0),点B(2,0),动点C满足|AC|=|AB|,则点C与点P(1,4)所连线段的中点M的轨迹方程为.-22-考点1考点2考点3-23-考点1考点2考点3-24-考点1考点2考点3考向二截距型最值问题例4在例3的条件下求y-x的最大值和最小值.思考如何求解形如ax+by的最值问题?-25-考点1考点2考点3-26-考点1考点2考点3考向三距离型最值问题例5在例3的条件下求x2+y2的最大值和最小值.思考如何求解形如(x-a)2+(y-b)2的最值问题?解 如图所示,x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小

9、值.-27-考点1考点2考点3考向四建立目标函数求最值问题例6设圆x2+y2=2的切线l与x轴正半轴,y轴正半轴分别交于点A,B,当|AB|取最小值时,切线l的方程为.思考如何借助圆的几何性质求有关线段长的最值?答案: x+y-2=0 -28-考点1考点2考点3-29-考点1考点2考点3解题心得求解与圆有关的最值问题的两大规律:(1)借助几何性质求最值形如 的最值问题,可转化为定点(a,b)与圆上的动点(x,y)的斜率的最值问题;形如t=ax+by的最值问题,可转化为动直线的截距的最值问题;形如u=(x-a)2+(y-b)2的最值问题,可转化为动点到定点的距离的平方的最值问题.(2)建立函数关

10、系式求最值根据题目条件列出关于所求目标式子的函数解析式,然后根据关系式的特征选用参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.-30-考点1考点2考点3(2)已知实数x,y满足(x-2)2+(y+1)2=1,则2x-y的最大值为,最小值为.(3)已知P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,则x2+y2的最小值为.(4)设P为直线3x-4y+11=0上的动点,过点P作圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为.-31-考点1考点2考点3-32-考点1考点2考点3-33-考点1考点2考点3求半径常有以下方法:(1)若已知直线与圆相切,则圆心到切点(或切线)的距离等于半径;(2)若已知弦长、弦心距、半径,则可利用弦长的一半、弦心距、半径三者满足勾股定理的关系求得.-34-考点1考点2考点31.求圆的方程需要三个独立条件,因此不论选用哪种形式的圆的方程都要列出三个独立的关系式.2.解答与圆有关的最值问题一般要结合代数式的几何意义进行,注意数形结合,充分运用圆的性质.3.解决与圆有关的轨迹问题,一定要看清要求,是求轨迹方程还是求轨迹.-35-易错警示轨迹问题易忘记特殊点的检

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论