版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2节 空间几何体的外表积和体积课时训练选题明细表知识点、方法题号几何体的外表积1、6、7、10、12、13、14、15几何体的体积1、2、3、4、5、8、9、11、13、15、16与球有关的问题5、12、14折叠与展开问题6、11、16一、选择题1. (2021年高考卷)一个四棱锥的侧棱长都相等,底面是正方形,其正 (主)视图如下列图,那么该四棱锥侧面积和体积分别是(B )8(A)4 週8 (B)4 屈,亍H(C)4(+1),(D)8,8解析:由题意可以得到原四棱锥的底面正方形的边长为2,四棱锥的高为2,所以侧面三角形底边上的高为,1该四棱锥的侧面积为 S侧=一 x 2X. X 4=4 ,1
2、 “体积为V直x4X 2车,应选B.1C*11-1 1药2. 2021市模拟假设一个底面是等腰直角三角形C为直角顶点的三 棱柱的正视图如下列图,那么该三棱柱的体积等于A A1Bp Cp D宀解析:由正视图知,该三棱柱的底面两直角边的长为胡,高为1,所以该1三棱柱的体积V= x农x谊x仁1.应选A.3. 2021联考某个容器的三视图中正视图与侧视图相同,如下列图,那么 这个容器的容积不计容器材料的厚度为B 正標團備視图330(A) n (B) n (C) n (D) n解析:由三视图知,原几何体为圆锥和圆柱的组合体,其中圆锥和圆柱 的底面半径为1,圆柱的高为2,圆锥的高为1, 所以这个容器的容积
3、为V=nX 12X7n2 XnX 1 X 1 =应选B.4. (2021市诊断测试)某几何体的三视图如下列图,那么它的体积是2n-n(A)(B)8-2tt(C)8-(D)8-2 n解析:由三视图知,几何体为一个正方体里面挖去一个圆锥,正方体的 棱长为2,圆锥的底面半径为1,高为2,1加所以该几何体的体积为 V=2"- XnX 12X 2=8-3,应选C.5. (2021兖州摸底)某几何体的三视图如下列图,它的体积为(C )*5(A)72 n (B)48 n (C)30 n (D)24 n解析:由三视图可知该几何体是半个球体和一个倒立圆锥体的组合体 球的半径为3,圆锥的底面半径为3、高
4、为4,那么根据体积公式可得 组合体的体积为30 n ,应选C.6. 矩形ABCD勺面积为8,当矩形ABCD周长最小时,沿对角线AC 把厶ACD折起得到三棱锥D ABC那么三棱锥外接球的外表积等于(B )(A)8 n (B)16 n (C)48应 n ( D)50 n解析:设矩形长为x,8那么宽为疋(x>0),虽 71周长 P=2x+ > 2X 2=8 .当且仅当x=,即x=2时,周长取到最小值.此时正方形ABCD沿 AC折起,取AC的中点为0,那么OA=OB=OC=OD,三棱锥D ABC勺四个顶点都在以O为球心,以2为半径的球上,此球的 外表积为4nX 22=16n .7. (20
5、21市一模)一个几何体的三视图如下列图,假设该几何体的外表积为92 m2,那么h等于(C )(A)2(B)3(C)4(D)5解析:由三视图可知该几何体是一个底面是直角梯形的四棱柱,几何体的外表积是2 +耳2 X 2 X 4+(2+4+5+J:r+ *)h=92,即 16h=64,解得h=4.应选C.二、填空题8.(2021年高考卷)如图,在三棱柱ABC-ABC中,D,E,F分别是AB,AC,AA的中点设三棱锥F-ADE的体积为Vi,三棱柱ABGABC的体积为V2, 那么Vi :匕二.解析:5=-AC-AB SLnZ_C?l/?-4/l|AV二YAH ACAA1 11112X答案:1 : 249
6、. 2021市一中月考某几何体的三视图如下列图,那么该几何体的体积为.11-2II>正復圈解析:由三视图可知几何体是一个圆柱体由平面截后剩余的一局部并且可知该几何体是个高为 6,底面半径为1的圆柱体的一半,1那么知所求几何体体积为2XnX 12X 6=3n .答案:3 n10. 2021师大附中模拟如图,一个空间几何体的正视图、侧视图都 是面积为,一个角为60°的菱形,俯视图为正方形,那么这个几何 体的外表积为.解析:由三视图知,该几何体是由两个完全相同的正四棱锥组合在一 起的.因为正视图、侧视图都是面积为,一个角为60°的菱形,所以菱形的边长为1,即正四棱锥的底面边
7、长为1,侧面的斜高为1.因此,这个几何体的外表积为 S= X 1 X 1 X 8=4.答案:4<A>11. 2021模拟如下列图,一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,那么该多面体的体积是解析:易知该几何体是正四棱锥设为正四棱锥PABCD连接BD,由 PD=PB=1,BD=,知 PDL PB.设底面中心为O, 那么四棱锥高PO=,那么其体积是12. 2021潍坊市一模一圆柱接于球 O,且圆柱的底面直径与母 线长均为2,那么球0的外表积为.解析:圆柱的底面直径与母线长均为 2,所以球的直径二 =2 ,即球半径为出,所以球的外表积为4 nX 上2=8
8、 n .答案:8 n三、解答题13. 如图,某几何体的三视图如图单位:cm:1画出这个几何体的直观图不要求写画法;(2)求这个几何体的外表积与体积解:(1)这个几何体的直观图如下列图. 这个几何体可看成是正方体 AG与直三棱柱BGQADP的组合体.由 PA二PD=gAiDi=AD=2, 可得PA丄PD.故所求几何体的外表积1S=5X 22+2X 22+2x (輕)2=22+4 电(cm2),1体积 V=Z+2 x (Q)2X 2=10(cm3).14. (2021潍坊期末)一个几何体的三视图如下列图,其中正视图和侧视 图是腰长为4的两个全等的等腰直角三角形,假设该几何体的所有顶点 在同一球面上
9、,求该球的外表积.解:如下列图该几何体的直观图,是有一条侧棱垂直于底面的四棱锥G.ABCD.其中底面ABCD是边长为4的正方形,高为CC=4,该几何体的所有顶点在同一球面上,那么球的直径为AG=4 =2R,所以球的半径为R=2 ,所以球的外表积是4n R2=4nX 2,2=48n .15.如下列图,在边长为5+的正方形ABC冲,以A为圆心画一个扇形,以0 为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆0为圆锥 底面,围成一个圆锥,求圆锥的外表积与体积.解:设圆锥的母线长为I,底面半径为r,高为h,7 + r += 5 + x 寸22nr n由条件'解得 r=M!,l=4 E
10、!,S= n rl+ n=10 n ,T2九阳加,V=3 n r2h= *16.2021三校联考如图1所示, ABC是等腰直角三角形,AC=BC=4,E F分别为AC AB的中点,将厶AEF沿EF折起,使A'在 平面BCEF上的射影O恰为EC的中点,得到图2.(1)求证:EF 丄 A'C;求三棱锥F A'BC的体积.(1)证明:在厶ABC中 ,EF是等腰直角 ABC的中位线, EF丄 AC,在四棱锥 A' BCEF中 ,EF丄 A'E,EF 丄 EC,又 ECH A'E=E, EF丄平面 A'EC,又 A'C?平面 A'EC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度船舶股份投资收益分配合同范本3篇
- 二零二四年度英文版品牌管理师劳动合同范本3篇
- 2025年度新能源车辆租赁合同范本6篇
- 二零二五年度厂房拆除及拆除物回收再利用服务合同4篇
- 二零二五年度农业科技园场地使用权及农产品合作合同4篇
- 二零二四年度智慧农业管理系统软件采购合同3篇
- 二零二五年度商铺租赁与租赁违约责任合同4篇
- 2025年度大运河物流劳动合同用人单位绩效考核规范3篇
- 2025年度果园承包合同范本(含果树种植与农业物联网应用)4篇
- 二零二五年度吹填土方堆场租赁及管理合同3篇
- 2025版开发商与购房者精装修住宅买卖及售后服务合同3篇
- 心力衰竭的治疗(基层诊疗与指南2024)
- 2024-2025学年冀教新版八年级上册数学期末复习试卷(含详解)
- 2024-2025年江苏专转本英语历年真题(含答案)
- 《子宫肉瘤》课件
- 《机器人驱动与运动控制》全套教学课件
- 电子信息工程基础知识单选题100道及答案解析
- 电子商务平台技术服务合同范本1
- 血液透析器课件
- 2024届清华大学强基计划数学学科笔试试题(附答案)
- 期末 (试题) -2024-2025学年川教版(三起)英语四年级上册
评论
0/150
提交评论