[考研数学]历年考研数一填空选择_第1页
[考研数学]历年考研数一填空选择_第2页
[考研数学]历年考研数一填空选择_第3页
[考研数学]历年考研数一填空选择_第4页
[考研数学]历年考研数一填空选择_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当=_时,函数取得极小值.(2)由曲线与两直线及所围成的平面图形的面积是_.(3)与两直线及都平行且过原点的平面方程为_. (4)设为取正向的圆周则曲线积分= _.(5)已知三维向量空间的基底为则向量在此基底下的坐标是_.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设则在处(A)的导数存在,且(B)取得极大值(C)取得极小值 (D)的导数不存在(2)设为已知连续函数其中则的值(A)依赖于和(B)依赖于、和(C)依赖于、,不依

2、赖于(D)依赖于,不依赖于(3)设常数则级数(A)发散 (B)绝对收敛 (C)条件收敛(D)散敛性与的取值有关 (4)设为阶方阵,且的行列式而是的伴随矩阵,则等于(A)(B)(C) (D) 十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件发生的概率为现进行次独立试验,则至少发生一次的概率为_;而事件至多发生一次的概率为_.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为_.已知上述从第2个箱子中取出的球是白球,则从第一

3、个箱子中取出的球是白球的概率为_.(3)已知连续随机变量的概率密度函数为则的数学期望为_,的方差为_.二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若则= _.(2)设连续且则=_.(3)设周期为2的周期函数,它在区间上定义为 ,则的傅里叶级数在处收敛于_.(4)设4阶矩阵其中均为4维列向量,且已知行列式则行列式= _.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设可导且则时在处的微分是(A)与等价的无穷小(B)与同阶的无穷小(C)比低阶的无穷小(D)比高阶的无穷小(2)

4、设是方程的一个解且则函数在点处(A)取得极大值 (B)取得极小值 (C)某邻域内单调增加(D)某邻域内单调减少(3)设空间区域则(A) (B)(C)(D) (4)设幂级数在处收敛,则此级数在处(A)条件收敛(B)绝对收敛(C)发散(D)收敛性不能确定 (5)维向量组线性无关的充要条件是(A)存在一组不全为零的数使(B)中任意两个向量均线性无关(C)中存在一个向量不能用其余向量线性表示(D)中存在一个向量都不能用其余向量线性表示十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件出现的概率相等,若已知至少出现一次的概率等于则事件在一次试验中出现的概

5、率是_.(2)若在区间内任取两个数,则事件”两数之和小于”的概率为_.(3)设随机变量服从均值为10,均方差为0.02的正态分布,已知则落在区间内的概率为_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)已知则= _.(2)设是连续函数,且则=_.(3)设平面曲线为下半圆周则曲线积分=_.(4)向量场在点处的散度=_.(5)设矩阵则矩阵=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当时,曲线(A)有且仅有水平渐近线(B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直

6、渐近线(D)既无水平渐近线,又无铅直渐近线(2)已知曲面上点处的切平面平行于平面则点的坐标是(A) (B) (C)(D) (3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是(A)(B)(C)(D) (4)设函数而其中则等于(A)(B) (C)(D) (5)设是阶矩阵,且的行列式则中(A)必有一列元素全为0(B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件的概率随机事件的概率及条件概率则和事件的概率=_.(2)甲、乙两人独

7、立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为_.(3)若随机变量在上服从均匀分布,则方程有实根的概率是_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)过点且与直线垂直的平面方程是_. (2)设为非零常数,则=_.(3)设函数 ,则=_.(4)积分的值等于_.(5)已知向量组则该向量组的秩是_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设是连续函数,且则等于(A)(B)(C)(D) (2)已知函数具有任意阶导数,且则当为

8、大于2的正整数时的阶导数是(A) (B) (C)(D) (3)设为常数,则级数(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与的取值有关 (4)已知在的某个邻域内连续,且则在点处(A)不可导(B)可导,且(C)取得极大值(D)取得极小值 (5)已知、是非齐次线性方程组的两个不同的解、是对应其次线性方程组的基础解析、为任意常数,则方程组的通解(一般解)必是(A)(B) (C)(D) 十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量的概率密度函数则的概率分布函数=_.(2)设随机事件、及其和事件的概率分别是0.4、0.3和0.6,若表示的对立事件,那么积

9、事件的概率=_.(3)已知离散型随机变量服从参数为2的泊松分布,即则随机变量的数学期望=_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设 ,则=_.(2)由方程所确定的函数在点处的全微分=_.(3)已知两条直线的方程是则过且平行于的平面方程是_.(4)已知当时与是等价无穷小,则常数=_.(5)设4阶方阵则的逆阵=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线(A)没有渐近线(B)仅有水平渐近线 (C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线 (2)若连

10、续函数满足关系式则等于(A) (B) (C)(D) (3)已知级数则级数等于(A)3(B)7(C)8(D)9(4)设是平面上以、和为顶点的三角形区域是在第一象限的部分,则等于(A)(B) (C)(D)0 (5)设阶方阵、满足关系式其中是阶单位阵,则必有(A)(B) (C)(D) 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量服从均值为2、方差为的正态分布,且则=_.(2)随机地向半圆为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与轴的夹角小于的概率为_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中

11、横线上) (1)设函数由方程确定,则=_.(2)函数在点处的梯度=_.(3)设 ,则其以为周期的傅里叶级数在点处收敛于_.(4)微分方程的通解为=_.(5)设其中则矩阵的秩=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当时,函数的极限(A)等于2(B)等于0(C)为(D)不存在但不为(2)级数常数(A)发散 (B)条件收敛 (C)绝对收敛(D)收敛性与有关 (3)在曲线的所有切线中,与平面平行的切线(A)只有1条(B)只有2条(C)至少有3条(D)不存在(4)设则使存在的最高阶数为(A)0(B)1

12、(C)2(D)3 (5)要使都是线性方程组的解,只要系数矩阵为(A)(B) (C)(D) 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知则事件、全不发生的概率为_.(2)设随机变量服从参数为1的指数分布,则数学期望=_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数的单调减少区间为_.(2)由曲线 绕轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_.(3)设函数的傅里叶级数展开式为则其中系数的值为_.(4)设数量场则=_.(5)设阶矩阵的各行元素之和均为零,且的秩为则线性方程组的通解为_.二、选择题(本题共5小题,每

13、小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设则当时是的(A)等价无穷小(B)同价但非等价的无穷小(C)高阶无穷小(D)低价无穷小(2)双纽线所围成的区域面积可用定积分表示为(A)(B)(C)(D)(3)设有直线与 则与的夹角为(A)(B)(C)(D)(4)设曲线积分与路径无关,其中具有一阶连续导数,且则等于(A)(B) (C)(D) (5)已知为三阶非零矩阵,且满足则(A)时的秩必为1(B)时的秩必为2 (C)时的秩必为1(D)时的秩必为2 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有

14、10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为_.(2)设随机变量服从上的均匀分布,则随机变量在内的概率分布密度=_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)= _.(2)曲面在点处的切平面方程为_.(3)设则在点处的值为_.(4)设区域为则=_.(5)已知设其中是的转置,则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设则有(A)(B) (C)(D)(2)二元函数在点处两个偏导数、存在是在该点连续的(A)充分条件

15、而非必要条件(B)必要条件而非充分条件 (C)充分必要条件(D)既非充分条件又非必要条件 (3)设常数且级数收敛,则级数(A)发散(B)条件收敛 (C)绝对收敛(D)收敛性与有关 (4)其中则必有(A)(B) (C)(D) (5)已知向量组线性无关,则向量组(A)线性无关(B)线性无关 (C)线性无关(D)线性无关 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知、两个事件满足条件且则=_.(2)设相互独立的两个随机变量具有同一分布率,且的分布率为01则随机变量的分布率为_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)=_.(

16、2)= _.(3)设则=_.(4)幂级数的收敛半径=_.(5)设三阶方阵满足关系式且则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线 ,及平面则直线(A)平行于(B)在上 (C)垂直于(D)与斜交(2)设在上则或的大小顺序是(A)(B) (C)(D) (3)设可导则是在处可导的(A)充分必要条件(B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设则级数(A)与都收敛(B)与都发散 (C)收敛,而发散(D)收敛,而发散(5)设则必有(A)(B) (C)(D

17、) 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则的数学期望=_.(2)设和为两个随机变量,且则_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设则=_.(2)设一平面经过原点及点且与平面垂直,则此平面方程为_.(3)微分方程的通解为_.(4)函数在点处沿点指向点方向的方向导数为_.(5)设是矩阵,且的秩而则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知为某函数

18、的全微分,则等于(A)-1(B)0(C)1(D)2(2)设具有二阶连续导数,且则(A)是的极大值(B)是的极小值 (C)是曲线的拐点(D)不是的极值也不是曲线的拐点 (3)设且收敛,常数则级数(A)绝对收敛(B)条件收敛(C)发散(D)散敛性与有关(4)设有连续的导数且当时与是同阶无穷小,则等于(A)1(B)2(C)3(D)4(5)四阶行列式的值等于(A)(B) (C)(D) 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂和工厂的产品的次品率分别为1%和2%,现从由和的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属生产的概率是_.(

19、2)设是两个相互独立且均服从正态分布的随机变量,则随机变量的数学期望=_.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)=_.(2)设幂级数的收敛半径为3,则幂级数的收敛区间为_.(3)对数螺线在点处切线的直角坐标方程为_.(4)设为三阶非零矩阵,且则=_.(5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)二元函数 ,在点处(A)连续,偏导数存

20、在(B)连续,偏导数不存在(C)不连续,偏导数存在(D)连续,偏导数不存在(2)设在区间上令则(A) (B) (C) (D) (3)设则(A)为正常数(B)为负常数(C)恒为零(D)不为常数(4)设则三条直线(其中)交于一点的充要条件是(A)线性相关(B)线性无关(C)秩秩(D)线性相关线性无关(5)设两个相互独立的随机变量和的方差分别为4和2,则随机变量的方差是(A)8(B)16 (C)28(D)44 一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)=_.(2)设具有二阶连续导数,则=_.(3)设为椭圆其周长记为则=_.(4)设为阶矩阵为的伴随矩阵为阶单位矩阵

21、.若有特征值则必有特征值_.(5)设平面区域由曲线及直线所围成,二维随机变量在区域上服从均匀分布,则关于的边缘概率密度在处的值为_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设连续,则=(A)(B)(C)(D)(2)函数不可导点的个数是(A)3 (B)2 (C)1 (D)0 (3)已知函数在任意点处的增量且当时是的高阶无穷小,则等于(A)(B)(C)(D) (4)设矩阵是满秩的,则直线与直线(A)相交于一点(B)重合(C)平行但不重合(D)异面(5)设是两个随机事件,且则必有(A)(B)(C)(D)一

22、、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_.(2)=_.(3)的通解为=_.(4)设阶矩阵的元素全为1,则的个特征值是 _.(5)设两两相互独立的三事件和满足条件:且已知则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设是连续函数是的原函数,则(A)当是奇函数时必是偶函数(B)当是偶函数时必是奇函数(C)当是周期函数时必是周期函数 (D)当是单调增函数时必是单调增函数(2)设,其中是有界函数,则在处(A)极限不存在(B)极限存在,但不连续(C)连续,但不可导(D

23、)可导(3)设,其中 ,则等于(A) (B)(C)(D) (4)设是矩阵,是矩阵,则(A)当时,必有行列式(B)当时,必有行列式(C)当时,必有行列式 (D)当时,必有行列式(5)设两个相互独立的随机变量和分别服从正态分布和,则(A)(B)(C)(D)一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_.(2)曲面在点的法线方程为_.(3)微分方程的通解为_.(4)已知方程组无解,则= _.(5)设两个相互独立的事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相等,则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个

24、符合题目要求,把所选项前的字母填在题后的括号内)(1)设、是恒大于零的可导函数,且,则当时,有(A)(B)(C)(D)(2)设为在第一卦限中的部分,则有(A)(B)(C)(D)(3)设级数收敛,则必收敛的级数为(A) (B) (C)(D) (4)设维列向量组线性无关,则维列向量组线性无关的充分必要条件为(A)向量组可由向量组线性表示 (B)向量组可由向量组线性表示(C)向量组与向量组等价 (D)矩阵与矩阵等价(5)设二维随机变量服从二维正态分布,则随机变量与 不相关的充分必要条件为(A)(B)(C)(D)一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设为任意常数

25、)为某二阶常系数线性齐次微分方程的通解,则该方程为_.(2),则= _.(3)交换二次积分的积分次序:_.(4)设,则= _.(5),则根据车贝晓夫不等式有估计 _.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数在定义域内可导,的图形如右图所示,则的图形为(A) (B) (C) (D)(2)设在点的附近有定义,且则(A)(B)曲面在处的法向量为(C)曲线 在处的切向量为(D)曲线 在处的切向量为(3)设则在=0处可导(A)存在 (B) 存在(C)存在 (D)存在(4)设,则与(A)合同且相似 (B)

26、合同但不相似(C)不合同但相似 (D)不合同且不相似(5)将一枚硬币重复掷次,以和分别表示正面向上和反面向上的次数, 则和相关系数为 (A) -1(B)0(C)(D)1一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)= _.(2)已知,则=_.(3)满足初始条件的特解是_.(4)已知实二次型经正交变换可化为标准型,则=_.(5)设随机变量,且二次方程无实根的概率为0.5,则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数的四条性质:在点处连续, 在点处的一阶偏

27、导数连续,在点处可微, 在点处的一阶偏导数存在.则有:(A)(B)(C)(D)(2)设,且,则级数为(A)发散 (B)绝对收敛(C)条件收敛 (D)收敛性不能判定.(3)设函数在上有界且可导,则(A)当时,必有 (B)当存在时,必有(C) 当时,必有 (D) 当存在时,必有.(4)设有三张不同平面,其方程为()它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设和是相互独立的连续型随机变量,它们的密度函数分别为和,分布函数分别为和,则(A)必为密度函数 (B) 必为密度函数(C)必为某一随机变量的分布函数 (D) 必为某一随机变量的分布函数.一、填空题(本

28、题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1) = .(2)曲面与平面平行的切平面的方程是 .(3)设,则= .(4)从的基到基的过渡矩阵为 .(5)设二维随机变量的概率密度为 ,则 .(6)已知一批零件的长度(单位:cm)服从正态分布,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则的置信度为0.95的置信区间是 .(注:标准正态分布函数值二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数在内连续,其导函数的图形如图所示,则有(A)一个极小值点和两个极大值点(B)两个

29、极小值点和一个极大值点 (C)两个极小值点和两个极大值点(D)三个极小值点和一个极大值点(2)设均为非负数列,且,则必有(A)对任意成立 (B)对任意成立(C)极限不存在 (D)极限不存在(3)已知函数在点的某个邻域内连续,且,则(A)点不是的极值点(B)点是的极大值点(C)点是的极小值点(D)根据所给条件无法判断点是否为的极值点(4)设向量组I:可由向量组II:线性表示,则(A)当时,向量组II必线性相关 (B)当时,向量组II必线性相关(C)当时,向量组I必线性相关 (D)当时,向量组I必线性相关(5)设有齐次线性方程组和,其中均为矩阵,现有4个命题: 若的解均是的解,则秩秩 若秩秩,则的

30、解均是的解 若与同解,则秩秩 若秩秩, 则与同解以上命题中正确的是(A)(B)(C)(D)(6)设随机变量,则(A)(B)(C)(D) 一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线上与直线垂直的切线方程为_ .(2)已知,且,则=_ .(3)设为正向圆周在第一象限中的部分,则曲线积分的值为_.(4)欧拉方程的通解为_ .(5)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则=_ .(6)设随机变量服从参数为的指数分布,则= _ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号

31、内)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B)(C) (D)(8)设函数连续,且则存在,使得(A)在(0,内单调增加 (B)在内单调减少(C)对任意的有 (D)对任意的有 (9)设为正项级数,下列结论中正确的是(A)若=0,则级数收敛(B)若存在非零常数,使得,则级数发散(C)若级数收敛,则 (D)若级数发散, 则存在非零常数,使得(10)设为连续函数,则等于(A)(B)(C) (D) 0(11)设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得,则满足的可逆矩阵为(A) (B) (C) (D)(12)设为满足的任意两个非零矩阵,则必

32、有(A)的列向量组线性相关的行向量组线性相关(B)的列向量组线性相关的列向量组线性相关 (C)的行向量组线性相关的行向量组线性相关(D)的行向量组线性相关的列向量组线性相关(13)设随机变量服从正态分布对给定的,数满足,若,则等于(A) (B)(C) (D) (14)设随机变量独立同分布,且其方差为 令,则(A) (B) (C) (D)一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线的斜渐近线方程为 _.(2)微分方程满足的解为_.(3)设函数,单位向量,则=._.(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则_.(5)设均为3维列向量,记矩阵

33、,如果,那么 .(6)从数1,2,3,4中任取一个数,记为, 再从中任取一个数,记为, 则=_.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数,则在内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设是连续函数的一个原函数,表示的充分必要条件是则必有(A)是偶函数是奇函数 (B)是奇函数是偶函数(C)是周期函数是周期函数 (D)是单调函数是单调函数(9)设函数, 其中函数具有二阶导数, 具有一阶导数,则必有(A) (B)(C)(D)(10)设有三元方程,根

34、据隐函数存在定理,存在点的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数 (B)可确定两个具有连续偏导数的隐函数和 (C)可确定两个具有连续偏导数的隐函数和 (D)可确定两个具有连续偏导数的隐函数和(11)设是矩阵的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) (B) (C) (D)(12)设为阶可逆矩阵,交换的第1行与第2行得矩阵分别为的伴随矩阵,则(A)交换的第1列与第2列得 (B)交换的第1行与第2行得 (C)交换的第1列与第2列得 (D)交换的第1行与第2行得 (13)设二维随机变量的概率分布为X Y0100.410.1已知随机事件与相

35、互独立,则(A) (B)(C)(D)(14)设为来自总体的简单随机样本,为样本均值,为样本方差,则(A) (B)(C) (D)一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1).(2)微分方程的通解是 .(3)设是锥面()的下侧,则 .(4)点到平面的距离= .(5)设矩阵,为2阶单位矩阵,矩阵满足,则= .(6)设随机变量与相互独立,且均服从区间上的均匀分布,则= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数具有二阶导数,且,为自变量在处的增量,与分别为在点处对应

36、的增量与微分,若,则(A)(B)(C)(D)(8)设为连续函数,则等于(A)(B)(C)(C)(9)若级数收敛,则级数(A)收敛(B)收敛(C)收敛(D)收敛 (10)设与均为可微函数,且.已知是在约束条件下的一个极值点,下列选项正确的是(A)若,则(B)若,则(C)若,则(D)若,则(11)设均为维列向量,是矩阵,下列选项正确的是(A)若线性相关,则线性相关(B)若线性相关,则线性无关(C)若线性无关,则线性相关(D)若线性无关,则线性无关.(12)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的-1倍加到第2列得,记,则(A)(B) (C)(D)(13)设为随机事件,且,则必有(A)(

37、B)(C)(D)(14)设随机变量服从正态分布,服从正态分布,且则(A) (B)(C)(D)一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当时,与等价的无穷小量是(A) (B) (C) (D)(2)曲线,渐近线的条数为(A)0 (B)1 (C)2 (D)3 (3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间的图形分别是直径为2的上、下半圆周,设.则下列结论正确的是(A)(B) (C)(D)(4)设函数在处连续,下列命题错误的是(A)若存在,则 (B)若 存在,则 (C)若 存在,则 (

38、D)若 存在,则(5)设函数在(0, +)上具有二阶导数,且, 令则下列结论正确的是(A)若,则必收敛 (B)若,则必发散 (C)若,则必收敛 (D)若,则必发散(6)设曲线(具有一阶连续偏导数),过第2象限内的点和第象限内的点为上从点到的一段弧,则下列小于零的是(A) (B)(C) (D)(7)设向量组线性无关,则下列向量组线形相关的是(A) (B)(C) (D)(8)设矩阵,则与(A)合同,且相似 (B)合同,但不相似(C)不合同,但相似 (D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为(A)(B)(C)(D)(

39、10)设随即变量服从二维正态分布,且与不相关,分别表示的概率密度,则在的条件下,的条件概率密度为(A) (B)(C)(D)二、填空题(1116小题,每小题4分,共24分,请将答案写在答题纸指定位置上)(11)=_.(12)设为二元可微函数,则=_.(13)二阶常系数非齐次线性方程的通解为=_.(14)设曲面,则=_.(15)设矩阵,则的秩为_.(16)在区间中随机地取两个数,则这两个数之差的绝对值小于的概率为_.一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数则的零点个数(A)0(B)1 (C)2(

40、D)3(2)函数在点处的梯度等于(A)(B)- (C)(D)(3)在下列微分方程中,以(为任意常数)为通解的是(A)(B)(C)(D)(4)设函数在内单调有界,为数列,下列命题正确的是(A)若收敛,则收敛 (B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛(5)设为阶非零矩阵,为阶单位矩阵. 若,则 (A)不可逆,不可逆(B)不可逆,可逆 (C)可逆,可逆 (D)可逆,不可逆(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图,则的正特征值个数为(A)0(B)1(C)2(D)3(7)设随机变量独立同分布且分布函数为,则分布函数为(A)(B) (C) (D) (8

41、)设随机变量,且相关系数,则(A)(B)(C)(D)二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)微分方程满足条件的解是. (10)曲线在点处的切线方程为.(11)已知幂级数在处收敛,在处发散,则幂级数的收敛域为.(12)设曲面是的上侧,则.(13)设为2阶矩阵,为线性无关的2维列向量,则的非零特征值为.(14)设随机变量服从参数为1的泊松分布,则.一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当时,与等价无穷小,则(A) (B)(C)(D)(2)如图,正方形被其对角线划分为四个区域,则(A) (B)(C) (D) (3)设函数在区间上的图形为1-2023-1O则函数的图形为*;0231-2-11(A) 0231-2-11(B)0231-11(C) 0231-2-11(D)(4)设有两个数列,若,则(A)当收敛时,收敛.(B)当发散时,发散. (C)当收敛时,收敛.(D)当发散时,发散.(5)设是3维向量空间的一组基,则由基到基的过渡矩阵为(A)(B) (C)(D)(6)设均为2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论