高二年级(上册)数学期中试题[卷]及的答案解析精选_第1页
高二年级(上册)数学期中试题[卷]及的答案解析精选_第2页
高二年级(上册)数学期中试题[卷]及的答案解析精选_第3页
高二年级(上册)数学期中试题[卷]及的答案解析精选_第4页
高二年级(上册)数学期中试题[卷]及的答案解析精选_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 .wd.高二上册数学期中试卷及答案精选学生的时代只有课本、作业、同学和试卷,单纯却美好。下面整理了高二上册数学期中试卷及答案精选,欢送阅读参考。高二上册数学期中试卷及答案精选(一)一、单项选择(注释)1、在ABC中, 60°,如果ABC 两组解,那么x的取值范围是 ( )A.(1,2)B.(3,+)C.( 2,+)D.( 1,+)2、函数 ,假设 那么实数 的取值范围是 ( )A.(1,+) B. (1,-)C. (+,2)D.(-,2)3、设函数 那么不等式 的解集是( )A.(1,2) (3,+) B.(1,2) (2,+)C. (1,2) (3,-)D.(1,2) (2,-)

2、4、正数 满足 , ,那么 的取值范围是_ .5、实数 满足 那么 的最大值是( ) C. 7 6、设f(x)= 那么不等式f(x)>2的解集为( )A.(1,2) (3,+) B.( ,+)C.(1,2) ( ,+) D.(1,2)7、以下不等式(1)m-3>m-5;(2)5-m>3-m;(3)5m>3m ;(4)5+m>5-m其中正确的有( )(A)1个 (B)2个(C)3个 (D)4个8、等差数列 的前 项和为 , , , 取得最小值时 的值为()A. B. C. D.9、设等差数列 的前 项和为 ,假设 ,那么 等于( )10、S=1,2,xx,A是S的三

3、元子集,满足:A中的所有元素可以组成等差数列.那么,这样的三元子集A的个数是()A. B.C. D.11、设等差数列 满足: ,那么 ( )12、在 中, , , 分别是 , , 的对边, , , 成等比数列,且 ,那么 的值为( )A. 4 C. 1 评卷人 得分二、填空题(注释)13、 ,假设 恒成立,那么实数 的取值范围_14、不等式(x+y) 对任意正实数x,y恒成立,那么正实数a的最小值为_15、在 中,假设 ,那么 的形状是16、在ABC中,(b+c)(c+a)(a+b)=456,那么sinAsinBsinC=_.评卷人 得分三、解答题(注释)17、设数列 满足以下关系: 为常数)

4、, ;数列 满足关系: .(1)求证:(2)证明数列 是等差数列.18、集合A=xx2(1)求集合AB;(2)假设不等式2x2+ax+b19、数列 的各项均为正整数,且 ,设集合 .性质1 假设对于 ,存在唯一一组 ( )使 成立,那么称数列 为完备数列,当k取最大值时称数列 为k阶完备数列.性质2 假设记 ,且对于任意 , ,都有 成立,那么称数列 为完整数列,当k取最大值时称数列 为k阶完整数列.性质3 假设数列 同时具有性质1及性质2,那么称此数列 为完美数列,当 取最大值时 称为 阶完美数列;()假设数列 的通项公式为 ,求集合 ,并指出 分别为几阶完备数列,几阶完整数列,几阶完美数列

5、;()假设数列 的通项公式为 ,求证:数列 为 阶完备数列,并求出集合 中所有元素的和 .()假设数列 为 阶完美数列,试写出集合 ,并求数列 通项公式.20、数列 为等差数列,公差 ,其中 恰为等比数列,假设 , , ,求等比数列 的公比试求数列 的前n项和21、 是各项均为正数的等比数列,且 ,;(1)求 的通项公式;(2)设 ,求数列 的前 项和 .22、在数列 中, .(1)证明数列 是等比数列;(2)设 是数列 的前 项和,求使 的最小 值.参考答案一、单项选择1、答案C2、答案C解析由题知 在 上是增函数,由题得 ,解得 ,应选择C。3、答案B解析由,函数先递增后递减再递增,当 ,

6、 令解得 。当 , ,故 ,解得 。4、答案解析5、答案D解析:画图可知,四个角点分别是 ,可知解析6、答案C7、答案B解析8、答案A解析9、答案C10、答案B解析11、答案C解析12、答案C解析因为 , , 成等比数列,所以 .又 , .在 中,由余弦定理得: ,那么 .由正弦定理得 ,又因为 , ,所以 .二、填空题13、答案14、答案 4解析15、答案钝角三角形解析16、答案753解析(b+c)(c+a)(a+b)=456,设b+c=4k,c+a=5k,a+b=6k(k>0),解得a= k,b= k,c= k,sinAsinBsinC=abc=753.三、解答题17、答案(1)假设

7、存在 N*,使得 ,那么 , ,故 ,这说明数列是常数数列, 与 矛盾,故假设不成立, 成立;(2)由 为常数,故数列 是首项为 ,公差为 的等差数列.解析18、答案A=xx2B=x1(1)AB=x-2(2)2x2+ax+b-3和1为2x2+ax+b=0的两根,故 解得a=4,b=-6.解析19、答案() ;为2阶完备数列, 阶完整数列,2阶完美数列;()假设对于 ,假设存在2组 及 ( )使 成立,那么有,即,其中 ,必有 ,所以仅存在唯一一组 ( )使 成立,即数列 为 阶完备数列;,对 , ,那么 ,因为 ,那么 ,所以 ,即()假设存在 阶完美数列,那么由性质1易知 中必有 个元素,由

8、()知 中元素成对出现(互为相反数),且 ,又 具有性质2,那么 中 个元素必为.解析20、答案依题意得: 即解得 或 (舍去) 公比 。由得 ,解析21、答案(1)设公比为 ,那么 ,由,有,化简得 ,又 ,故 . .(2)由(1)知, ,因此,.22、答案(1)由由 ,得是等比数列.(2)由(1)知:使 的最小 值为3.解析高二上册数学期中试卷及答案精选(二)一、选择题:本大题共12小题,单项选择,每题5分,共60分.1.a=(2,1),b=(3,),假设ab,那么的值为 ( ) B.-2 D. -82.从装有2个红 球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至

9、少一个红球 与都是黒球 B.至少一个黒球与都是黒球C.至少一个黒球与至少一个红球 D.恰有一个黒球与恰有两 个黒球3.等差数列an中,a1=1,a3+a5=14,其前n项和Sn=100,那么n=( )4.用秦九韶算法计算多项式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-2时的值时,v3的值为() C.-134 5.甲、乙、丙三人站在一起照相留念,乙正好站在甲丙之间的概率为( )A. B. C. D.6.执行如下图的程序框图,如果输出 ,那么判断框中应填()A. B. C. D.7.如果一个几何体的三视图如下图(单位)万元 万元 万元 万元10.在不等式组表示的区域内

10、任取一点,那么此点到原点的距离大于2的概率是( )A. B. C. D.11.定义在R上的奇函数f(x),满足f(x+4)=-f(x),且在区间0,2上是增函数,那么( )(-33)(11)12. 是球 的球面上的两点, , 为球面上的动点。假设三棱锥 的体积最大值为 ,那么球的外表积为( )A. B. C. D.二、填空题:本大题共4小题,每题5分,共20分. 把答案填在题中的横线上.13.将136化为4进制数的结果为_.14.经过点(1,7)与圆 相切的直线方程是 .15.给出下面的3个命题:(1)函数 的最小正周期是 ;(2)函数 在区间 上单调递增;(3) 是函数 的图象的一条对称轴.

11、其中正确命题的序号是 .16. 方程 的两个根均大于1,那么 的取值范围为三、解答题:本大题共6小题,共70分.解容许写出必要的文字说明、证明过程或演算步骤.17. (本小题总分值10分)求圆心在直线3x-y=0上,与x轴相切,且被直线x-y=0截得的弦长为 的圆的方程.18. (本小题总分值12分)某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)补全频率分布直方图并求出频率分布表中、的值;(2)根据频率分布直方图,计算这100名学生成绩的众数、中位数;(3)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用

12、分层抽样抽取6名学生进入第二 轮面试,求:第4组至少有一名学生被考官A面试的概率?19. (本小题总分值12分)四棱锥P-ABCD,底面ABCD是 边长为2的菱形,又 ,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN/平面PMB;(2)证明:平面PMB 平面PAD;(3)求点A到平面PMB的距离.20. (本小题总分值12分)设函数 。(1)求 的值域;(2)记 的内角A、B、C的对边长分别为a,b,c,假设 =1,b=1,c= ,求a.21. (本小题总分值12分)在数列 中, , , .( 1)证明数列 是等比数列;(2)求数列 的前 项和 .22. (本小题总分值12分

13、)圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.(1)求圆C的方程;(2)假设OPOQ=-2,求实数k的值;(3)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.高二上册数学期中试卷及答案精选(三)第一卷(选择题 共50分)一、选择题:(此题共10个小题,每题5分,共50分)1.假设命题“ 为真,“ 为真,那么 ( )真q真 假q假 真q假 假q真2. ,那么以下命题中一定正确的选项是( )A.假设 ,那么 B.假设C.假设 D.假设 ,那么3.ABC中, ,那么B=( )A、450

14、 B、1350 C、450或1350 D、300或15004.某种细胞每隔30分钟分裂1次,1个分裂成2个,那么1个这样的细胞经过4小时30分钟后,可得到的细胞个数为 ( )A、512 B、511 C、1024 D、10235.命题“ , 的否认是 ( )A. , B. ,C. , D. ,6.以下函数中,最小值为4的是( )A. ( ) B.C. D.7.在等比数列 中,假设 ,那么 的值为( )A 5 B 9 C D 818.假设不等式组 表示的平面区域是一个三角形,那么 的取值范围是 ( )9. 的内角 的对边分别为 ,假设 成等比数列,且 ,那么 等于( )A. B. C. D.10.

15、在数列an中,假设a2n-a2n+1=p(n1,nN*,p为常数),那么称an为“等方差数列,以下是对“等方差数列的判断:假设an是等方差数列,那么a2n是等差数列; (-1)n是等方差数列;假设an是等方差数列,那么akn(kN*,k为常数)也是等方差数列.其中真命题的序号是( )A. B. C. D. 第II卷(非选择题共100分)二、填空题:(此题共6小题,每题4分,共24分)11.数列 满足 , , ,那么 .12. .13.函数 的图象恒过定点 ,假设点 在直线 上,那么 的最小值为 .14.假设不等式 对一切 恒成立,那么 的取值范围是 .15.二次函数 的局部对应值如下表:0 1

16、 2 3 46 00 6那么不等式 的解集是 。16.把正整数按上小下大、左小右大的原那么排成如图三角形数表(每行比上一行多一个数):设 (i、jN*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如 =8.假设 =210,那么i、j的值分别为_ ,_。三.解答题(本大题有6小题,共76分;解容许写出文字说明与演算步骤)17. (本大题12分)p:-2x10,q:x2-2x+1-a20(a>0),假设q是p的必要不充分条件,求实数a的取值范围.18. (本大题12分)ABC的内角A、B、C所对的边分别为a,b,c,且a=2, cosB= .(1)假设b=4,求sinA的值;

17、 (2) 假设ABC的面积SABC=4,求b,c的值.19.(本大题12分)等差数列 满足 , 为 的前 项和.(1)求通项公式 ;(2)设 是首项为1,公比为3的等比数列,求数列 的通项公式及其前 项和 .20. (本大题13分)某家公司每月生产两种布料A和B,所有原料是两种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量。羊毛颜色 每匹需要 ( kg) 供给量(kg)布料A 布料B红 4 4 1400绿 6 3 1800生产每匹布料A、B的利润分别为120元、80元。那么如何安排生产才能够产生最大的利润?最大的利润是多少?21.(本大题13分)某单

18、位设计一个展览沙盘,现欲在沙盘平面内,铺设一个对角线在L上的四边形电气线路,如下图.为充分利用现有材料,边BC,CD用一根5米长的材料弯折而成,边BA,AD用一根9米长的材料弯折而成,使A+C= ,且AB=BC.设AB=x米,cos A=f(x).(1)求f(x)的解析式,并指出x的取值范围;(2)求 的最大值,并指出相应的x值。22. (本大题14分) (m为常数,m>0且 ),设 是首项为4,公差为2的等差数列.(1)求证:数列an是等比数列;(2)假设bn=an ,且数列bn的前n项和Sn,当 时,求 ;(3)假设cn= ,问是否存在m,使得cn中每一项恒小于它后面的项?假设存在,

19、求出m的范围;假设不存在,说明理由.二、填空题:(此题共6小题,每题4分,共24分)11. 8 12. 2 13. 4 14. 15. 16. 20, 20三.解答题(本大题有6小题,共76分;解容许写出文字说明与演算步骤)17.解:p:记A= ;q: ,记B= ,。4分 q是p必要不充分条件, 。8分。11分故实数a的取值范围为: 。12分18. 解.(1) cosB= >0,且0由正弦定理得 , . 。6分(2) SABC= acsinB=4, , c=5. 。9分由余弦定理得b2=a2+c2-2accosB, .。12分19. 解:(1) ,。2分 ; 。6分(2) , 。9分。1

20、2分20. 解.设每月生产布料A为 x 匹、生产布料B为 y 匹,利润为Z元,。1分那么 ;目标函数为 = 40(3 x + 2 y )4分作出二元一次不等式 所表示的平面区域(阴影局部)即可行域。8分解方程组 得M点的坐标为(250,100) 所以当x = 250 , y =100 时 。11分 答:该公司每月生产布料A、B分别为250 、100匹时,能够产生最大的利润,最大的利润是38000 元。13分21. 解:(1)在ABD中,由余弦定理得BD2=AB2+AD2-2ABADcos A.同理,在CBD中,BD2=CB2+CD2-2CBCDcos C. 因为A和C互补,所以AB2+AD2-

21、2ABADcos A=CB2+CD2-2CBCDcos C=CB2+CD2+2CBCDcos A.。4分即x2+(9-x)2-2x(9-x)cos A=x2+(5-x)2+2x(5-x)cos A.解得cos A ,即f(x) ,其中x(2,5)。7分。9分,。11分当 时, 。13分另:也可用二次函数求解。22. 解:()由题意 即 。1分m>0且 ,m2为非零常数,数列an是以m4为首项,m2为公比的等比数列。4分()由题意 ,当式两端同乘以2,得 。6分-并整理,得=。8分()由题意 。9分要使 对一切 成立,即 对一切 成立,A.当m>1时, 成立;。11分当0 对一切 成

22、立,只需 ,解得 , 考虑到0综上,当01时,数列cn中每一项恒小于它后面的项.。14分高二上册数学期中试卷及答案精选(四)一、 选择题:(本大题共12小题,每题3分,共36分,在每题给出的四个选项中,只有一项为哪一项符合要求的,请将你认为正确的答案填在答题卡上)( )1、直线 的倾斜角是A. B. C. D.( )2、圆 的圆心坐标和半径分别为A. B. C. D.( )3、点P(3,2)与点Q(1,4)关于直线l对称,那么直线l的方程为A. B. C. D.( )4、双曲线 的两条渐近线互相垂直,那么该双曲线的离心率是A. 2 B. 3 D.( )5、直线 截圆 得到的弦长为A. B. C

23、. D.( )6、以 的焦点为顶点,顶点为焦点的椭圆方程为A. B. C. D.( )7、椭圆 内的一点 ,过点P的弦恰好以P为中点,那么这弦所在的直线方程A. B. C. D.( )8、 设F(c,0)为椭圆 的右焦点,椭圆上的点与点F的距离的最大值为M,最小值为m,那么椭圆上与F点的距离是 的点是A.( )B.(0, )C.( )D.以上都不对( )9、假设直线 与曲线 有两个交点,那么k的取值范围是A.1,+) B. -1,- ) C. ( ,1 D.(-,-1( )10、某厂生产甲产品每千克需用原料A和原料B分别为 、 千克,生产乙产品每千克需用原料A和原料B分别为 、 千克。甲、乙产

24、品每千克可获利润分别为 、 元。月初一次性购进本月用原料A、B各 、 千克。要方案本月生产甲产品和乙产品各多少千克才能使月利润总额到达最大。在这个问题中,设全月生产甲、乙两种产品分别为 千克、 千克,月利润总额为 元,那么,用于求使总利润 最大的数学模型中,约束条件为A. B. C. D.( )11. 抛物线C: 的焦点为F,直线 与C交于A,B两点.那么 =(A) (B) (C) (D)( )12.点P(-3,1)在椭圆 的左准线上,过点P斜率为 的光线,经直线y=-2反射后通过椭圆的左焦点,那么这个椭圆的离心率为A. B. C. D.二、 填空题:(本大题共5小题,每题3分,共15分,把答

25、案填在题中横线上)13、抛物线 的准线方程为 .14、椭圆 和双曲线 有一样的焦点,那么实数 的值是15、实数x和y满足约束条件 的最小值是16、斜率为 的直线 与椭圆 +y2=1相交于A、B两点,那么AB的最大值为17. , 为双曲线左,右焦点,以双曲线右支上任意一点P为圆心,以 为半径的圆与以 为圆心, 为半径的圆内切,那么双曲线两条渐近线的夹角是三.解答题:(本大题共5小题,共49分。解答题应写出文字说明、证明过程或演算步骤)18、(此题8分)抛物线关于y轴对称,它的顶点在坐标原点,并且经过点M( ),求它的标准方程。19、(此题10分)直线 平行于直线 ,并且与两坐轴围成的三角形的面积为 求直线 的方程。20、(此题10分)求过点 且圆心在直线 上的圆的方程21、(此题10分)某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论