两相混合式步进电机H桥驱动电路设计方案原理_第1页
两相混合式步进电机H桥驱动电路设计方案原理_第2页
两相混合式步进电机H桥驱动电路设计方案原理_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、两相混合式步进电机 H桥驱动电路设计原理H桥功率驱动电路可应用于步进电机、交流电机及直流电机等的 驱动。永磁步进电机或混合式步进电机的励磁绕组都必须用双极性电 源供电,也就是说绕组有时需正向电流,有时需反向电流,这样绕组 电源需用H桥驱动。本文以两相混合式步进电机驱动器为例来设计 H 桥驱动电路。电路原理图1给出了 H桥驱动电路与步进电机AB相绕组连接的电路框图。Y(b)电机疑组AB的电流方向4个开关K1和K4, K2和K3分别受控制信号a, b的控制,当控制信号使开关K1, K4合上,K2, K3断开时,电流在线圈中的流向如 图1(a),当控制信号使开关K2, K3合上,K1, K4断开时,

2、电流在线 圈中的流向如图1(b)所示。4个二极管VD1, VD2 VD3 VD4为续流 二极管,它们所起的作用是:以图1(a)为例,当K1, K4开关受控制 由闭合转向断开时,由于此时线圈绕组 AB上的电流不能突变,仍需 按原电流方向流动(即A-B),此时由VD3 VD2来提供回路。因此, 电流在K1, K4关断的瞬间由地VD线圈绕组 ALVDA电源+Vs 形成续流回路。同理,在图1(b)中,当开关K2, K3关断的瞬间,由 二极管VD4 VD1提供线圈绕组的续流,电流回路为地VD4线圈绕 组BA VD电源+Vs。步进电机驱动器中,实现上述开关功能的元件在实际电路中常采用功率 MOSFE管。由

3、步进电机H桥驱动电路原理可知,电流在绕组中流动是两个完 全相反的方向。推动级的信号逻辑应使对角线晶体管不能同时导通, 以免造成高低压管的直通。另外,步进电机的绕组是感性负载,在通电时,随着电机运行频 率的升高,而过渡的时间常不变,使得绕组电流还没来得及达到稳态 值又被切断,平均电流变小,输出力矩下降,当驱动频率高到一定的 时候将产生堵转或失步现象。因此,步进电机的驱动除了电机的设计 尽量地减少绕组电感量外,还要对驱动电源采取措施,也就是提高导 通相电流的前后沿陡度以提高电机运行的性能。步进电机的缺陷是高频出力不足,低频振荡,步进电机的性能除 电机自身固有的性能外,驱动器的驱动电源也直接影响电机

4、的特性。要想改善步进电机的频率特性,就必须提高电源电压。电路设计图2给出了驱动器AB相线圈功率驱动部分原理图S2动电瑤知功車MOSFET書的JK动选用的功率 MOSFE元件是 IRFP460,其,ID=20A, VDss=500 V, RDS(ON)=0 27Q。在图2中,功率MOSFE管VT1, VT2, VT3,VT4和续流二极管 VD11, VD19 VD14 VD22相当于图 1 中的 K1 , K2, K3, K4和 VD1 VD2 VD3 VD4功率MOSFE管的控制信号是由TTL逻辑电平a , a , b , b来提 供的,其中a与a , b与b在逻辑上互反。a.驱动电流前后沿的

5、改善从步进电机的运行特性分析中知道,性能较高的驱动器都要求提 供的电流前后沿要陡,以便改善电机的高频响应。本驱动器中由于功 率MOSFE管栅极电容的存在,对该管的驱动电流实际表现为对栅极 电容的充、放电。极间电容越大,在开关驱动中所需的驱动电流也越 大,为使开关波形具有足够的上升和下降陡度,驱动电流要具有较大 的数值。如果直接用集电极开路的器件如SN7407驱动功率MOSFE管, 则电路在MOSFE管带感性负载时,上升时间过长,会造成动态损耗 增大。为改进功率MOSFE管的快速开通时间,同时也减少在前级门 电路上的功耗,采用图2虚线框内的左下臂驱动电路。集电极开路器件U14是将TTL电平转换成

6、CMO电平的缓冲/驱动 器,当U14输出低电平时,功率MOSFE管VT2的栅极电容通过1N4148 被短路至地,这时U14吸收电流的能力受U14内部导通管所允许通过 的电流限制。而当U14输出为高电平时,VT2管的栅极通过晶体管V3 获得电压和电流,充电能力提高,因而开通速度加快。b.保护功能图2虚线框中,1N4744是栅源间的过压保护齐纳二极管,其稳 压值为15 V。由于,功率MOSFE管栅源间的阻抗很高,故工作于开 关状态下的漏源间电压的突变会通过极间电容耦合到栅极而产生相 当幅度的VCS脉冲电压。这一电压会引起栅源击穿造成管子的永久损 坏,如果是正方向的VCS脉冲电压,虽然达不到损坏器件

7、的程度,但 会导致器件的误导通。为此,要适当降低栅极驱动电路的阻抗,在栅 源之间并接阻尼电阻或接一个稳压值小于20 V而又接近20V的齐纳二极管1N4744防止栅源开路工作。功率MOSFE管有内接的快恢复二极管。当不接VD11,VD12VD13 VD14时,假定此时电机AB相绕组由VT1管(和VT4管)驱动,即VT2 管(和VB)截止,VT1管(和VT4管)导通,电流经VT1管流过绕组。当 下一个控制信号使VT1管关断时,负载绕组的续流电流经VT2的内接快恢复二极管从地获取。此时,VT2管的漏源电压即是该快恢复二极 管的通态压降,为一很小的负值。当 VT1再次导通时,该快恢复二极 管关断,VT

8、2的漏源电压迅速上升,直至接近于正电源的电压 +VS 这意味着VT2漏源间要承受很高且边沿很陡的上升电压, 该上升电压 反向加在VT2管内的快恢复二极管两端,会使快恢复二极管出现恢复 效应,即有一个很大的电流流过加有反向电压的快恢复二极管。为了抑制VT2管内的快恢复二极管出现这种反向恢复效应, 在图2电路中 接人了 VD11, VD12 VD13 VD14其中,反并联快恢复二极管 VD11 VD14的作用是为电机AB相绕组提供续流通路,VD12 VD13是为了使 功率MOSFE管VT1, VT2内部的快恢复二极管不流过反向电流,以保证VT1, VT2在动态工作时能起正常的开关作用。 VD19 VD20 VD21 VD22的作用亦是同样的道理。对图2电路的分析可知,信号a=1, b=1的情况是不允许存在的, 否则将因同时导通从而使电源直接连到地造成功率管的损坏;另外,根据步进电机运行脉冲分配的要求,VT1, VT2, VT3, VT4经常处于 交替工作状态,由于晶体管的关断过程中有一段存储时间和电流下降 时间,总称关断时间,在这段时间内,晶体管并没完全关断。若在此 期间,另一个晶体管导通,则造成上、下两管直通而使电源短路,烧 坏晶体管或其他元器件。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论