MATLAB作业2参考答案_第1页
MATLAB作业2参考答案_第2页
MATLAB作业2参考答案_第3页
MATLAB作业2参考答案_第4页
MATLAB作业2参考答案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档精品文档MATLAB作业二参考答案1、试求出如下极限。(x2)x2(x3)x3x2yxy31-cos(x2y2)(1)lim2-r,(2)limf(3)lim2y(x5)2x5x%1(xy)30(x2y2)ex,【求解】极限问题可以由下面语句直接求解。> >symsx;f=(x+2F(x+2)*(x+3)A(x+3)/(x+5)A(2*x+5);limit(f,x,inf)ans=exp(-5)> >symsxyfa=(xA2*y+x*yA3)/(x+y)A3;limit(limit(fa,x,-1),y,2)ans=> 6> >fc=(1-c

2、os(xA2+yA2)*exp(xA2+yA2)/(xA2+yA2);limit(limit(fc,x,0),y,0)ans=0,V22、(2) atan- = ln(x y ) x2、试求出下面函数的导数。(1)y(x)=Jxsinxj-ex【求解】由求导函数diff()可以直接得出如下结果,其中(2)为隐函数,故需要用隐函数求导公式得出导数。> >symsx;f=sqrt(x*sin(x)*sqrt(1-exp(x);simple(diff(f)ans=1/2/(x*sin(x)*(1-exp(x)A(1/2)A(1/2)*(sin(x)*(1-exp(x)A(1/2)+x*c

3、os(x)*(1-exp(x)A(1/2)-1/2*x*sin(x)/(1-exp(x)A(1/2)*exp(x)>>symsx,y;f=atan(y/x)-10g仅人2+丫人2);f1=simple(-diff(f,x)/diff(f,y)f1=(y+2*x)/(x-2*y)2.2,1x-uu二u3、假设u=cosJ,试验证=。iy二x-y二y.x【求解】证明二者相等亦可以由二者之差为零来证明,故由下面的语句直接证明。>>symsxy;u=acos(x/y);diff(diff(u,x),y)-diff(diff(u,y),x)ans=222-xy2.xf-f-f4、

4、假设f(x,y)=e上dt,试求2-2+200yex二x:-y二y【求解】由下面的命令可以得出所需结果。>>symsxytf=int(exp(-tA2),t,0,x*y);x/y*diff(f,x,2)-2*diff(diff(f,x),y)+diff(f,y,2)simple(ans)ans=-2*exp(-xA2*yA2)*(-xA2*yA2+1+xA3*y)3xeyz5、假设已知函数矩阵f(x,y,z)=|32,试求出其Jacobi矩阵。x+ysinz【求解】Jacobi矩阵可以由下面的语句直接得出。>>symsxyzF=3*x+exp(y)*z;xA3+yA2*

5、sin(z);jacobian(F,x,y,z)ans=3,exp(y)*z,exp(y)3*xA2,2*y*sin(z),yA2*cos(z)6、试求解下面的不定积分问题。(1)I(x)=x(x 1) dx14+际(2) I (x) = xeax cosbxdx【求解】(1)可以用下面的语句求出问题的解>> syms x; f=sqrt(x*(x+1)/(sqrt(x)+sqrt(x+1);int(f,x)(2)可以求出下面的结果>> syms a b xf=x*exp(a*x)*cos(b*x); int(f,x)7、试求解下面的定积分或无穷积分。(2) I11 x

6、2。1 , x4dx【求解】可以直接求解>>symsx;int(cos(x)/sqrt(x),x,0,inf)ans=1/2*2A(1/2)*piA(1/2)可以得出>>symsx;int(1+xA2)/(1+xA4),x,0,1)ans=1/4*2A(1/2)*pi8、假设f(x)=e*xsin(3x十冗/3),试求出积分函数R(t)=;f(x)f(t+x)dx。【求解】定义了x的函数,则可以由subs()函数定义出t+x的函数,这样由下面的语句可以直接得出R函数。>>symsxt;f=exp(-5*x)*sin(3*x+sym(pi)/3);R=int(

7、f*subs(f,x,t+x),x,0,t);simple(R)ans=1/1360*(15*exp(t)A10*3A(1/2)*cos(3*t)-25*cos(9*t)+25*exp(t)A10*3A(1/2)*sin(3*t)-68*cos(3*t)-15*3A(1/2)*cos(9*t)-25*3A(1/2)*sin(9*t)-15*exp(t)A10*sin(3*t)+15*sin(9*t)+93*exp(t)A10*cos(3*t)/exp(t)A159、试对下面函数进行Fourier哥级数展开。(1)f(x)=(n-x)sinx,-n<x<n;(2)f(x)=e”,nE

8、x<n;【求解】可以立即由下面的语句求出。functionA,B,F=fseries(f,x,n,a,b)ifnargin=3,a=-pi;b=pi;endL=(b-a)/2;ifa+b,f=subs(f,x,x+L+a);endA=int(f,x,-L,L)/L;B=;F=A/2;%?a0fori=1:nan=int(f*cos(i*pi*x/L),x,-L,L)/L;bn=int(f*sin(i*pi*x/L),x,-L,L)/L;A=A,an;B=B,bn;F=F+an*cos(i*pi*x/L)+bn*sin(i*pi*x/L);endifa+b,F=subs(F,x,x-L-a

9、);end>>symsx;f=(sym(pi)-abs(x)*sin(x);A,B,F=fseries(f,x,10,-pi,pi);FF=1/2*pi*sin(x)+16/9/pi*sin(2*x)+32/225/pi*sin(4*x)+48/1225/pi*sin(6*x)+64/3969/pi*sin(8*x)+80/9801/pi*sin(10*x)可以由下面语句求解,并得出数学公式为>>symsx;f=exp(abs(x);A,B,F=fseries(f,x,10,-pi,pi);F>>vpa(F,10)ans=7.047601355-7.6842

10、21126*cos(x)+2.819040541*cos(2.*x)-1.536844225*cos(3.*x)+.8291295709*cos(4.*x)-.5910939328*cos(5.*x)+.3809514246*cos(6.*x)-.3073688450*cos(7.*x)+.2168492724*cos(8.*x)-.1874200274*cos(9.*x)+.1395564625*cos(10.*x)10、试求出下面函数的Taylor哥级数展开。(1)I。sintdt,(2)ln(x+Ji+x2).(3)e'xsin(3x+n/3)分别关于x=0、x二的哥级数展开。(

11、4)f(x,y)=1_cos(x+2y2)关于x=1、y=0进行二维Taylor22x2;:;y2(xy)e级数展开。【求解】由下面的语句可以分别求出各个函数的哥级数展开,> >symstx;f=int(sin(t)/t,t,0,x);taylor(f,x,15)> >symsx;f=log(x+sqrt(1+xA2);taylor(f,x,15)该函数的前4项展开> >symsxa;f=exp(-5*x)*sin(3*x+sym(pi)/3);taylor(f,x,4,a)该函数需要使用Maple的展开函数。> >symsxy;f=(1-cos

12、(xA2+yA2)/(xA2+yA2)*exp(xA2+yA2);F=maple('mtaylor',f,'x=1,y',4),111111、,11、求级数(一+)+(2+/)+I+(f+fO+的前n项及无穷项的和。23232n3n【求解】下面的语句可以直接求解级数的和。> >symsnk;symsum(1/2Ak+1/3Ak,k,1,n)ans=-2*(1/2)A(n+1)-3/2*(1/3)A(n+1)+3/2> >symsum(1/2Ak+1/3Ak,k,1,inf)ans=3/2当然,无穷级数的和还可以通过极限的方式求出。>

13、 2、试求出下面的极限。1 11.1(1) lim+十川+2-,22-142-162-1(2n)2-11 11.1(2) limn(-+lll+-)。nE-n2二n22二n23二n2n二【求解】可以用下面两种方法求解。> >symskn;symsum(1/(2*k)A2-1),k,1,inf)ans=1/2> >limit(symsum(1/(2*k)A2-1),k,1,n),n,inf)ans=1/2可以由下面的语句直接求解。> >symsknlimit(n*symsum(1/(nA2+k*pi),k,1,n),n,inf)ans=113、试对下面数值描述

14、的函数求取各阶(<5)数值微分,并用梯形法求取定积分。x00.10.20.30.40.50.60.70.80.911.11.2y02.2083.2063.4443.2412.8162.3111.811.360.9820.6790.4470.277【求解】可以由下面的语句得出函数的各阶导数,得出的曲线如图3-2所示。functiondy,dx=diff_ctr(y,Dt,n)yx1=y00000;yx2=0y0000;yx3=00y000;yx4=000y00;yx5=0000y0;yx6=00000y;switchncase 1dy=(-diff(yx1)+7*diff(yx2)+7*d

15、iff(yx3)-diff(yx4)/(12*Dt);L0=3;case 2dy=(-diff(yx1)+15*diff(yx2)-15*diff(yx3)+diff(yx4)/(12*DtA2);L0=3;case 3dy=(-diff(yx1)+7*diff(yx2)-6*diff(yx3)-6*diff(yx4)+7*diff(yx5)-diff(yx6)/(8*DtA3);L0=5;case 4dy=(-diff(yx1)+11*diff(yx2)-28*diff(yx3)+28*diff(yx4)-11*diff(yx5)+diff(yx6)/(6*DtA4);L0=5;enddy=

16、dy(L0+1:end-L0);dx=(1:length(dy)+L0-2-(n>2)*Dt;>>x=0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2;y=022083206,3.4443241,2.816,2.311,1.81,1.36,0.982,0.679,0.447,0.277;dy1,dx1=dikctr(y,x(2)-x(1),1);dy2,dx2=diff_ctr(y,x(2)-x(1),2);dy3,dx3=diff_ctr(y,x(2)-x(1),3);dy4,dx4=dikctr(y,x(2)-x(1),4);plot(dx1+x(1),dy1,'-',dx2+x(1),dy2,'-',dx3+x(1),dy3,':',dx4+x(1),dy4,'-.')另一方法dy1,dx1=diff_ctr(y,x(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论