2012年全国中考数学压轴题分类解析汇编 专题10 代数综合问题[1]_第1页
2012年全国中考数学压轴题分类解析汇编 专题10 代数综合问题[1]_第2页
2012年全国中考数学压轴题分类解析汇编 专题10 代数综合问题[1]_第3页
2012年全国中考数学压轴题分类解析汇编 专题10 代数综合问题[1]_第4页
2012年全国中考数学压轴题分类解析汇编 专题10 代数综合问题[1]_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2012年全国中考数学压轴题分类解析汇编专题10:代数综合问题锦元数学工作室 编辑1. (2012广东佛山10分)规律是数学研究的重要内容之一初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律)下面对函数y=x2的某种数值变化规律进行初步研究:xi012345.yi01491625.yi+1yi1357911.由表看

2、出,当x的取值从0开始每增加1个单位时,y的值依次增加1,3,5.请回答:当x的取值从0开始每增加个单位时,y的值变化规律是什么?当x的取值从0开始每增加个单位时,y的值变化规律是什么?【答案】解:(1)n是任意整数,则表示任意一个奇数的式子是:2n+1。(2)有理数b=(n0)。(3)当x的取值从0开始每增加个单位时,列表如下:xi012.yi014.yi+1yi.故当x的取值从0开始每增加个单位时,y的值依次增加、 、 。当x的取值从0开始每增加个单位时,列表如下:xi0.yi0.yi+1yi.故当x的取值从0开始每增加个单位时,y的值依次增加、 、 。【考点】分类归纳(数字的变化类),二

3、次函数的性质,实数。【分析】(1)n是任意整数,偶数是能被2整除的数,则偶数可以表示为2n,因为偶数与奇数相差1,所以奇数可以表示为2n+1。(2)根据有理数是整数与分数的统称,而所有的整数都可以写成整数的形式,据此可以得到答案。(3)根据图表计算出相应的数值后即可看出y随着x的变化而变化的规律。2. (2012广东梅州10分)(1)已知一元二次方程x2+px+q=0(p24q0)的两根为x1、x2;求证:x1+x2=p,x1x2=q(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(1,1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值【答案】(1)证明:a=1

4、,b=p,c=q,p24q0,。(2)解:把(1,1)代入y=x2+px+q得pq=2,即q=p2。 设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)。d=|x1x2|,d2=(x1x2)2=(x1+x2)24 x1x2=p24q=p24p+8=(p2)2+4。当p=2时,d 2的最小值是4。【考点】一元二次方程根的判别式和根与系数的关系,抛物线与x轴的交点,曲线上点的坐标与方程的关系,二次函数的最值。【分析】(1)根据一元二次方程根与系数的关系可直接证得。 【教材中没有元二次方程根与系数的关系可先根据求根公式得出x1、x2的值,再求出两根的和与积即可】(2)把

5、点(1,1)代入抛物线的解析式,再由d=|x1x2|可得d2关于p的函数关系式,应用二次函数的最值原理即可得出结论。3. (2012广东湛江12分)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x240解:x24=(x+2)(x2)x240可化为 (x+2)(x2)0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组,得x2,解不等式组,得x2,(x+2)(x2)0的解集为x2或x2,即一元二次不等式x240的解集为x2或x2(1)一元二次不等式x2160的解集为 ;(2)分式不等式的解集为 ;(3)解一元二次不等式2x23x0【答案】解:(1)x4或x4。 (2)x3

6、或x1。 (3)2x23x=x(2x3)2x23x0可化为 x(2x3)0由有理数的乘法法则“两数相乘,异号得负”,得或。解不等式组,得0x,解不等式组,无解。不等式2x23x0的解集为0x。【考点】有理数的乘法法则,一元一次不等式组的应用。【分析】(1)将一元二次不等式的左边因式分解后根据有理数的乘法法则“两数相乘,同号得正”化为两个一元一次不等式组求解即可。(2)根据有理数的除法法则“两数相除,同号得正”,可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可。 (3)将一元二次不等式的左边因式分解后,有理数的乘法法则“两数相乘,异号得负”,化为两个一元一次不等式组求解即可。4.

7、 (2012贵州黔西南14分)问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍。解:设所求方程的根为y,则y=2x,所以把代入已知方程,得化简,得:故所求方程为这种利用方程根的代换求新方程的方法,我们称为“换根法”。请阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式)(1)已知方程,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为: ;(2)已知关于x的一元二次方程有两个不等于零的实数根,求一个一元二方程,使它的根分别是已知方程的倒数。【答案】解:(1)y2y2=0。 (2)设所求方程的根为y,则(x0),于是(y0)。把代入方程,得,去分母,

8、得a+by+cy2=0。若c=0,有,可得有一个解为x=0,与已知不符,不符合题意。c0。所求方程为cy2+by+a=0(c0)。【考点】一元二次方程的应用。【分析】(1)设所求方程的根为y,则y=x所以x=y。把x=y代入已知方程,得y2y2=0。(2)根据所给的材料,设所求方程的根为y,再表示出x,代入原方程,整理即得出所求的方程。5. (2012江苏南京9分)“?”的思考下框中是小明对一道题目的解答以及老师的批阅。题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的

9、面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x2x=288解这个方程,得x1=-12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2?我的结果也正确小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打开了一个“?”结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样 (2)如图,矩形ABCD在矩形ABCD的内部,ABAB,ADAD,且AD:AB=2:1,设AB与AB、BC与BC、

10、CD与CD、DA与DA之间的距离分别为a、b、c、d,要使矩形ABCD矩形ABCD,a、b、c、d应满足什么条件?请说明理由【答案】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由。在“设矩形蔬菜种植区域的宽为xm,则长为2xm”前补充以下过程:设温室的宽为ym,则长为2ym。则矩形蔬菜种植区域的宽为(y11)m,长为(2y31)m。,矩形蔬菜种植区域的长与宽之比为2:1。(2)a+c b+d =2。理由如下:要使矩形ABCD矩形ABCD,就要,即,即 ,即a+c b+d =2。【考点】一元二次方程的应用(几何问题),相似多边形的性质,比例的性质。【分析】(1)根据题意可得小明

11、没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以由已知条件求出矩形蔬菜种植区域的长与宽的关系即可。(2)由使矩形ABCD矩形ABCD,利用相似多边形的性质,可得 ,然后利用比例的性质。6. (2012江苏盐城12分) 知识迁移: 当且时,因为,所以,从而(当时取等号).记函数,由上述结论可知:当时,该函数有最小值为. 直接应用:已知函数与函数, 则当_时,取得最小值为_. 变形应用:已知函数与函数,求的最小值,并指出取得该最小值时相应的的值. 实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千米为元;三是折旧费,它与路程的平方成正比,比例系数为.设

12、该汽车一次运输的路程为千米,求当为多少时,该汽车平均每千米的运输成本最低?最低是多少元?【答案】解:直接应用:1;2 。变形应用: ,有最小值为。当,即时取得该最小值。实际应用:设该汽车平均每千米的运输成本为元,则, 当(千米)时, 该汽车平均每千米的运输成本最低,最低成本为元。【考点】二次函数的应用,几何不等式。【分析】直接运用:可以直接套用题意所给的结论,即可得出结果:函数,由上述结论可知:当时,该函数有最小值为,函数与函数,则当时,取得最小值为。变形运用:先得出的表达式,然后将看做一个整体,再运用所给结论即可。实际运用:设该汽车平均每千米的运输成本为元,则可表示出平均每千米的运输成本,利

13、用所给的结论即可得出答案。7. (2012四川内江12分)如果方程的两个根是,那么请根据以上结论,解决下列问题:(1) 已知关于的方程求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2) 已知满足,求;(3) 已知满足求正数的最小值。【答案】解:(1)设关于的方程的两根为,则有:,且由已知所求方程的两根为,。所求方程为,即。(2)满足,是方程的两根。 。(3)且 。是一元二次方程的两个根,代简,得 。又此方程必有实数根,此方程的,即,。又 。 。正数的最小值为4。【考点】一元二次方程根与系数的关系和根的判别式,代数式化简。【分析】(1)设方程的两根为,得出,再根据这个一元二次方程

14、的两个根分别是已知方程两根的倒数,即可求出答案。(2)根据满足,得出是一元二次方程的两个根,由,即可求出的值。(3)根据,得出,是一元二次方程的两个根,再根据,即可求出c的最小值。8. (2012山东济宁8分)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张(1)请你用画树形图或列表的方法列举出可能出现的所有结果;(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;(3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的

15、个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值【答案】解:(1)画树形图如下:所有出现的结果共有12种。(2)两次抽取的正多边形能构成平面镶嵌的情况有4种:AB,AD,BA,DA,P(两次抽取的正多边形能构成平面镶嵌)=。(3)当正三角形和正方形构成平面镶嵌时,则有60p+90q=360,即2p+3q=12。p、q是正整数,p=3,q=2。当正三角形和六边形构成平面镶嵌时,则有60p+120q=360,即p+2q=6。p、q是正整数,p=4,q=1或p=2,q=2。【考点】列表法和树状图法,概率,多边形内角和定理,平面镶嵌(密铺)。【分析】

16、(1)列表或画树状图即可得到所有的可能情况。 (2)根据平面镶嵌的定义,能构成平面镶嵌的多边形有正三角形与正方形,正三角形与正六边形,然后根据概率公式列式计算即可得解。(3)对两种平面镶嵌的情况,根据方程代入数据整理,再根据p、q都是整数解答。9. (2012浙江湖州10分)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了101

17、20元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵? 【答案】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元, 乙种树每棵200元,丙种树每棵×200=300(元)。 (2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(10003x)棵根据题意:200·2x200x300(10003x)=210000,解得x=30。2x=600,10003x=100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵。(3)设购买丙种树y棵,则甲、乙两种树共(1000y)棵,根据题意得:200(1000y)300y21000010120,解得

18、:y201.2。y为正整数,y最大为201。答:丙种树最多可以购买201棵。【考点】一元一次方程和一元一次不等式的应用。【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数。(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可。(3)设购买丙种树y棵,则甲、乙两种树共(1000y)棵,根据题意列不等式,求出即可。10. (2012内蒙古赤峰14分)阅读材料:(1)对于任意两个数的大小比较,有下面的方法:当时,一定有;当时,一定有;当时,一定有反过来也成立因此,我们把这种比较两个数大小的方法叫做“求差法”(2)对于比较两个正数的大小时,我们还可以用它们的平方进行比较:,()与()的符号相同当0时,0,得当=0时,=0,得当0时,0,得解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸设每张A4纸的面积为x,每张B5纸的面积为y,且xy,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2回答下列问题:W1= (用x、y的式子表示)W2= (用x、y的式子表示)请你分析谁用的纸面积最大(2)如图1所示,要在燃气管道l上修

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论