激光焊接是激光加工材料加工技术应用讲解_第1页
激光焊接是激光加工材料加工技术应用讲解_第2页
激光焊接是激光加工材料加工技术应用讲解_第3页
激光焊接是激光加工材料加工技术应用讲解_第4页
激光焊接是激光加工材料加工技术应用讲解_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量 通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等 参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变 形、高效率和高速度的焊接方法,随着高功率C02和高功率的丫 AG激光器以及光 纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。目前的研究主要集中于C02激光和丫 AG激光焊接各种金属材料时的理论,包 括激光诱发的等离

2、子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊 接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与 异种材料的连接,激光接头性能评价等方面做了一定的研究1。激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金 属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。图 1显示在不同的辐射功 率密度下熔化过程的演变阶段2,激光焊接的机理有两种:1、热传导焊接当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收 将光能转化为热能而加热熔化,材料表面层的热以热传导

3、的方式继续向材料深处传 递,最后将两焊件熔接在一起。2、 激光深熔焊当功率密度比较大的激光束照射到材料表面时,材料吸收光能转 化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反 作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更 深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在 一起。这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊 接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以

4、,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小 孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互转换 , 由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持 续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期 间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式 下形成,然后再转变为小孔方式。目前激光焊应用领域的扩大,主要应用于:制造业应用、粉末冶金领域、汽车工业、电子工业、生物医学、其他领域如对BT20钛合金22、HEI30合金23、Li-ion电池24等激光焊接。激光焊接的特点是被焊接工件变形极小,几乎

5、没有连接间隙,焊接深度/宽度比高, 因此焊接质量比传统焊接方法高。但是,如向保证激光焊接的质量,也就是激光焊接 过程监测与质量控制是一个激光利用领域的重要内容,包括利用电感、电容、声 波、光电等各种传感器,通过电子计算机处理,针对不同焊接对象和要求,实现诸如焊 缝跟踪、缺陷检测、焊缝质量监测等项目,通过反馈控制调节焊接工艺参数,从而实 现自动化激光焊接。在激光焊接中,光束焦点位置是最关键的控制工艺参数之一,在 一定激光功率和焊接速度下,只有焦点处于最佳位置范围内才能获得最大熔深和好 的焊缝形状。在实际激光焊接中,为了避免和减少影响焦点位置稳定性的因素,需要 专门的夹紧和设备技术,这种设备的精确

6、程度与激光焊接的质量高低是相辅相成的。一、激光焊接的主要特性。与其它传统焊接技术相比,激光焊接的主要优点是:1、速度快、深度大、变形小。2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场, 光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光 束透明的材料进行焊接。3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。4、激光聚焦后,功率密度咼,在咼功率器件焊接时,深宽比可达5:1,最咼可达10:1。5、 可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用 于大批量自动化生产的微、小型工件的组焊中。6可焊接难以接近的部位,施

7、行非接触远距离焊接,具有很大的灵活性。尤其是 近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更 为广泛的推广和应用。7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工 为更精密的焊接提供了条件。但是,激光焊接也存在着一定的局限性:1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因 为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定 位精度达不到要求,很容易造成焊接缺憾。2、激光器及其相关系统的成本较高,一次性投资较大。二、激光焊接热传导。激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,

8、使 金属熔化形成焊接。在激光与金属的相互作用过程中,金属熔化仅为其中一种物理 现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子 体形成等。然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形 式。为此,必须了解激光与金属相互作用中所产生的各种物理现象以及这些物理现 象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化 的能量,达到焊接的目的。三、激光焊接的工艺参数。1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如 打孔、切割、

9、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在 表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率 密度在范围在104106W/CM2。2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当 高强度激光束射至材料表面,金属表面将会有6098%的激光能量反射而损失掉,且 反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重 要参数,也是决定加工设备造价及体积的关键参数。4、离焦量对焊接质量的影响。激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易 蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文 章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负 离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50200us 材料开始熔化,形成液相金

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论