版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、功率谱分析由题目容,设采样频率fs=1000HZ,数据长度为256,模型阶数 为 14, f1=200,f2=300 、250。( 1 )用最大熵法进行谱估计运行程序后,观察图像 f1 和 f2 相差较小时,功率谱变化更剧烈; 模型的阶数越高, 图像中能够获得的信息就越多, 但同时计算量也就 越大;增加数据长度可以获得更多的信息,提高了谱分析的分辨率, 这是因为AR模型的谱估计隐含着对数据和自相关函数的外推,其长 度可能会超过给定长度,分辨率不受信源信号的限制。( 2)分别用 Levinson 递推法和 Burg 法进行功率谱分析 Levinson 递推法运行程序后,观察图像, f1 和 f2
2、 相差较小时,功率谱变化更剧 烈;模型的阶数越高,图像中能够获得的信息就越多,但同时计算量 也就越大;增加数据长度可以获得更多的信息, 提高了谱分析的分辨 率,但本题号为正弦信号加白噪声,故图像观察不明显。Burg 法运行程序后,观察图像, f1 和 f2 相差较小时,功率谱变化更剧 烈;模型的阶数越高,图像中能够获得的信息就越多,但同时计算量 也就越大;增加数据长度可以获得更多的信息, 提高了谱分析的分辨 率。(3) 改变信号的相位、频率、信噪比,上述谱分析结果有何变化 如果正弦信号的频率过大,超过 fs/2 ,会产生频率混叠现象, 输入f1=600HZ,会在400HZ处产生一个波峰;降低信
3、噪比会导致谱 分辨率下降; 信号起始相位的变动可导致谱线的偏移和分裂 (我的图 像观察不到)。最大熵法估计N=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t);%0.3xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pmem(xn,14,Nfft,Fs);subplot(4,1,1) plot(f,10*log10(Pxx1); xlabel( 'Frequency (Hz)' );ylabel( 'Power Spectrum (dB)&
4、#39;);title( 'MEM f2/fs=0.3,Nfft=256,Oder=14' grid);N=1024;Nfft=256;Fs=1000; n=0:N-1; t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*250*t); %0.25 xn=x1+awgn(x1,10)+x2+awgn(x2,10); Pxx1,f=pmem(xn,14,Nfft,Fs);subplot(4,1,2) plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)');ylabel(title( 'MEM
5、 f2/fs=0.25,Nfft=256,Oder=14' grid'Power Spectrum (dB)'););N=1024;Nfft=512; Fs=1000; n=0:N-1;%修改数据长度 512t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pmem(xn,14,Nfft,Fs); subplot(4,1,3)plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)' );y
6、label( title('MEM f2/fs=0.3,Nfft=512,Oder=14'grid'Power Spectrum (dB)'););N=1024;Nfft=256;Fs=1000; n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pmem(xn,24,Nfft,Fs);%修改阶数为 24subplot(4,1,4)plot(f,10*log10(Pxx1);xlabel('Frequency
7、 (Hz)');ylabel(title( 'MEM f2/fs=0.3,Nfft=256,Oder=24' Grid'Power Spectrum (dB)');Burg 法估计N=1024;Nfft=256;Fs=1000; n=0:N-1; t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pburg(xn,14,Nfft,Fs); subplot(4,1,1) plot(f,10*log10(Pxx1);xlabel
8、( 'Frequency (Hz)');ylabel(title('Burg f2/fs=300,Nfft=256, Oder=14'grid'Power Spectrum (dB)' ););N=1024;Nfft=256;Fs=1000; n=0:N-1; t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*250*t); %0.25 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pburg(xn,14,Nfft,Fs); subplot(4,1,2) plot(f,10*log10(
9、Pxx1);xlabel( 'Frequency (Hz)');ylabel(title('Burg f2/fs=250,Nfft=256, Oder=14''Power Spectrum (dB)' ););gridN=1024;Nfft=512; Fs=1000; n=0:N-1; t=n/Fs;%修改数据长度 512x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pburg(xn,14,Nfft,Fs);subplot(4,
10、1,3)plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)');ylabel(title('Burg f2/fs=300,Nfft=512, Oder=14'gridN=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pburg(xn,24,Nfft,Fs);subplot(4,1,4)plot(f,10*log10(Pxx1);xl
11、abel( 'Frequency (Hz)');ylabel(title('Burg f2/fs=300,Nfft=256, Oder=24'grid'Power Spectrum (dB)' ); );%修改阶数为 24'Power Spectrum (dB)'););Levinson 递推法N=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1
12、,f=pyulear(xn,14,Nfft,Fs);%Pxx1,f=Levinson(xn,14,Nfft,Fs); subplot(4,1,1)plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)' );ylabel( title( 'Levinson Nfft=256,f2/fs=0.3,Oder=14''Power Spectrum (dB)' ););gridN=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*25
13、0*t); %0.25 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pyulear(xn,14,Nfft,Fs);subplot(4,1,2)plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)');ylabel('Power Spectrum (dB)');title( 'Levinson Nfft=256,f2/fs=0.25,Oder=14' );gridN=1024;Nfft=512;%修改数据长度 512Fs=1000;n=0:N-1;t=n/Fs;x1=sin(
14、2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pyulear(xn,14,Nfft,Fs);subplot(4,1,3) plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)');ylabel('Power Spectrum (dB)');title( 'Levinson Nfft=512,f2/fs=0.3,Oder=14' );gridN=1024;Nfft=256;Fs=1000;n=0:N-1;
15、t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pyulear(xn,24,Nfft,Fs);%修改阶数为 24subplot(4,1,4)plot(f,10*log10(Pxx1);xlabel('Frequency (Hz)');ylabel( 'Power Spectrum (dB)' );title('Levinson Nfft=256,f2/fs=0.3,Oder=24');grid最大熵法改变信号的相位
16、、频率、信噪比N=1024;Nfft=256;Fs=1000; n=0:N-1; t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pmem(xn,14,Nfft,Fs);subplot(4,1,1) plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)' );ylabel('Power Spectrum (dB)');title( 'MEM f2/fs=0.3,Nfft=256,Ode
17、r=14' );gridN=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t+pi/6);%相位加了 pi/6x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pmem(xn,14,Nfft,Fs);subplot(4,1,2) plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)' );ylabel('Power Spectrum (dB)');title( 'MEM
18、f2/fs=0.3,Nfft=256,Oder=14 ,相位加 pi/6' );gridN=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,5)+x2+awgn(x2,5); Pxx1,f=pmem(xn,14,Nfft,Fs);subplot(4,1,3)plot(f,10*log10(Pxx1);xlabel('Frequency (Hz)');ylabel(title( 'MEM f2/fs=0.3,Nfft=256
19、,Oder=14 grid%性噪比改为 5'Power Spectrum (dB)',性噪比 =5' ););N=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*300*t);x2=sin(2*pi*400*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pmem(xn,14,Nfft,Fs);subplot(4,1,4) plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)');ylabel('Power S
20、pectrum (dB)');title( 'MEM f1/fs=0.3,f2/fs=0.4,Nfft=256,Oder=14' ); gridBurg 改变信号的相位、频率、信噪比N=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pburg(xn,14,Nfft,Fs);subplot(4,1,1) plot(f,10*log10(Pxx1);xlabel( 'Fre
21、quency (Hz)' );ylabel( 'Power Spectrum (dB)' ); title('Burg f2/fs=300,Nfft=256, Oder=14');gridN=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t+pi/6);%相位加了 pi/6x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pburg(xn,14,Nfft,Fs);subplot(4,1,2) plot(f,10*lo
22、g10(Pxx1);xlabel( 'Frequency (Hz)');ylabel('Power Spectrum (dB)');title('Burg f2/fs=300,Nfft=256, Oder=14,相位加 pi/6' );gridN=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*300*t);x2=sin(2*pi*400*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pburg(xn,14,Nfft,Fs);subplot(4,
23、1,3) plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)');ylabel('Power Spectrum (dB)');title('Burg f1/fs=300,f2/fs=400,Nfft=256, Oder=14');gridN=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,5)+x2+awgn(x2,5);%性噪比改为 5Pxx1,f=pburg(xn
24、,14,Nfft,Fs);subplot(4,1,4) plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)');ylabel('Power Spectrum (dB)');title( 'Burg f2/fs=300,Nfft=256, Oder=14, grid性噪比 =5' );Levinson 法改变信号的相位、频率、信噪比N=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t);x2=sin(2*pi*300*t); %0.3 xn=x1+a
25、wgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pyulear(xn,14,Nfft,Fs); %Pxx1,f=Levinson(xn,14,Nfft,Fs);subplot(4,1,1) plot(f,10*log10(Pxx1);xlabel( 'Frequency (Hz)' );ylabel('Power Spectrum (dB)');title( 'Levinson Nfft=256,f2/fs=0.3,Oder=14' );gridN=1024;Nfft=256;Fs=1000;n=0:N-1;t=n/Fs;x1=sin(2*pi*200*t+pi/6);%相位加了 pi/6x2=sin(2*pi*300*t); %0.3 xn=x1+awgn(x1,10)+x2+awgn(x2,10);Pxx1,f=pyulear(xn,14,Nfft,Fs); %Pxx1,f=Levinson(xn,14,Nfft,Fs);subplot(4,1,2) plot(f,10*log10(Pxx1);xlabel(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度城镇土地使用权转让及配套设施建设合同协议3篇
- 二零二五年度小额贷款个人信用借款合同范本2篇
- 二零二五年度电子商务销售结算合同3篇
- 二零二五年度建筑施工安全环保事故处理协议3篇
- 二零二五年度个人住宅买卖合同示范范本
- 酒店管理工作中的风险管控
- 医院行业美工的医疗广告
- 培训行业课程安全操作指南
- 电子工程师的领域探索
- 二零二五年度农产品直销销售合同范本
- 《带一本书去读研:研究生关键学术技能快速入门》笔记
- 知识图谱智慧树知到答案2024年浙江大学
- 2024年度-美团新骑手入门培训
- 高一数学寒假讲义(新人教A专用)【复习】第05讲 三角函数(学生卷)
- 农村高中思想政治课时政教育研究的中期报告
- 医院定岗定编方案文档
- 4-熔化焊与热切割作业基础知识(一)
- 2023年200MW储能电站储能系统设计方案
- 个人安全与社会责任的基本知识概述
- 简易劳务合同电子版
- 明代文学绪论
评论
0/150
提交评论