




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教 具:多媒体、实物投影仪内容分析: 启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质. 教学过程:一、复习引入:1两个非零向量夹角的概念已知非零向量与,作,则()叫与的夹角.2平面向量数量积(内积
2、)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作a×b,即有a×b = |a|b|cosq,().并规定0与任何向量的数量积为0. 3“投影”的概念:作图C 定义:|b|cosq叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q = 0°时投影为 |b|;当q = 180°时投影为 -|b|.4向量的数量积的几何意义:数量积a×b等于a的长度与b在a方向上投影|b|cosq的乘积.5两个向量的数量积的性质:设a、b为两个非零向量
3、,e是与b同向的单位向量.1° e×a = a×e =|a|cosq; 2° ab Û a×b = 03° 当a与b同向时,a×b = |a|b|;当a与b反向时,a×b = -|a|b|. 特别的a×a = |a|2或4°cosq = ;5°|a×b| |a|b|二、讲解新课:平面向量数量积的运算律1交换律:a × b = b × a证:设a,b夹角为q,则a × b = |a|b|cosq,b × a = |b|a|cos
4、q a × b = b × a2数乘结合律:(a)×b =(a×b) = a×(b)证:若> 0,(a)×b =|a|b|cosq, (a×b) =|a|b|cosq,a×(b) =|a|b|cosq,若< 0,(a)×b =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq,(a×b) =|a|b|cosq,a×(b) =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq.3分配律:(a + b)×c
5、= a×c + b×c 在平面内取一点O,作= a, = b,= c, a + b (即)在c方向上的投影等于a、b在c方向上的投影和,即 |a + b| cosq = |a| cosq1 + |b| cosq2 | c | |a + b| cosq =|c| |a| cosq1 + |c| |b| cosq2, c×(a + b) = c×a + c×b 即:(a + b)×c = a×c + b×c说明:(1)一般地,(·)(·)(2)··,0(3)有如下常用性质:,()
6、()····()·三、讲解范例:例1 已知a、b都是非零向量,且a + 3b与7a - 5b垂直,a - 4b与7a - 2b垂直,求a与b的夹角.解:由(a + 3b)(7a - 5b) = 0 Þ 7a2 + 16a×b -15b2 = 0 (a - 4b)(7a - 2b) = 0 Þ 7a2 - 30a×b + 8b2 = 0 两式相减:2a×b = b2代入或得:a2 = b2设a、b的夹角为q,则cosq = q = 60°例2 求证:平行四边形两条对角线平方和等于四条边的
7、平方和.解:如图:平行四边形ABCD中,=|2=而= ,|2=|2 + |2 = 2= 例3 四边形ABCD中,且····,试问四边形ABCD是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量.解:四边形ABCD是矩形,这是因为:一方面:0,(),()()即··由于··,同理有由可得,且即四边形ABCD两组对边分别相等.四边形ABCD是平行四边形另一方面,由··,有(),而由平行四边形ABCD可得,代入上式得·(2),即·,也即ABBC.
8、综上所述,四边形ABCD是矩形.评述:(1)在四边形中,是顺次首尾相接向量,则其和向量是零向量,即0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系.四、课堂练习:1.下列叙述不正确的是( )A.向量的数量积满足交换律 B.向量的数量积满足分配律C.向量的数量积满足结合律 D.a·b是一个实数2.已知|a|=6,|b|=4,a与b的夹角为°,则(a+2b)·(a-3b)等于( )A.72 B.-72 C.36 D.-363.|a|=3,|b|=4,向量a+b与a-b的位置关系为( )A.平行 B.垂直 C.夹角为 D.不平行也不垂直4.已知|a|=3,|b|=4,且a与b的夹角为150°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏理工学院《视觉设计》2023-2024学年第一学期期末试卷
- 沈阳航空职业技术学院《机器人操作系统及应用》2023-2024学年第二学期期末试卷
- 红河职业技术学院《基础医学前沿技术》2023-2024学年第一学期期末试卷
- 2025年河南省新乡辉县联考全国中考大联考信息卷:生物试题试卷(2)含解析
- 浙江理工大学《工程力学Ⅰ》2023-2024学年第二学期期末试卷
- 2025年中考数学总复习49 微专题 代数推理试题 学案(含答案)
- 建设工程垫资合同范例二零二五年
- 正规的借条范例
- 模板一致行动人协议
- 体液形态学质量管理
- 病历书写规范
- 基于自监督学习的图像增强方法
- 民生银行社招在线测评题
- 团购房实施方案
- 湘少版六年级小升初英语综合练习测试卷-(含答案)
- 高中生物选择性必修一2.3神经冲动的产生和传导
- 施耐德电气EcoStruxure:智能电网技术教程.Tex.header
- 5维11步引导式学习地图-人才研修院
- 配电线路工(中级)技能鉴定理论考试题库(浓缩400题)
- 2024年重庆市中考英语试卷真题B卷(含标准答案及解析)+听力音频
- (正式版)QB∕T 2761-2024 室内空气净化产品净化效果测定方法
评论
0/150
提交评论