




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、小六奥数题集(合集)1.某班统计数学分数时,平均得分为85.13,经复查,发现将吴同学的87分看成了78分,再计算,平均分为85.31,求这个班有多少人? 解:这个班有(87-78)÷(85.31-85.13)=9÷0.18=50人2.有一个牧场,17头牛30天可将草吃完,19头牛则需要24天,现有若干头牛吃了6天后,卖掉了4头牛,余下的再吃2天将草吃完,问:原来有多少头牛吃草?解:设1只羊1天吃1个单位的草先求每日长草:(17×3019×24)÷(3024)9个单位再求草地原有草:17×309×30240个单位如果不卖4只
2、羊,那么8天共吃草:240+9×(6+2)+2×4320原来有羊:320÷(6+2)40只3.兄弟三人在外打工,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次,兄弟三人同时在11月1日回家,下一次三人同时见面在几月几日?解:6,8,12的最小公倍数是24,所以每经过24天,三人都在家.兄弟三人同时在11月1日回家,那么下一次三人同时见面在11月25日.4.两个同学要买一本同样的书,佳佳买这本书缺一分钱,小美买这本书缺0.48元,当她们合买时,钱仍不够,这本书多少钱?解:这本书0.48元钱.佳佳买这本书缺一分钱,那么小美给她一分钱就够了,但是当她们合买时,钱
3、仍不够,说明小美没用钱.5.龙田第二中心小学举行百科问答赛,有四组选手参加比赛,比赛规定答对一题得十分,答错一题扣三分,第一小队抢答了十题共得42分,那么答错几题?解:题目数字有错误.方法是(10×10-42)÷(10+3)=?(错的题目,但是除不尽)6.为了迎接外宾,学校准备了红黄绿三种颜色的小旗,每个同学手里都左右两手拿一面,彩旗列队迎接外宾,至少要有多少位同学才能保证其中至少有两人不但拿小旗颜色一样而且(左、右)顺序也一样? 解:至少要有10位同学才能保证其中至少有两人不但拿小旗颜色一样而且(左、右)顺序也一样.7.上下两册书的页码共有687个数字,且上册比下册多5页
4、,则上册书有多少页?解:1-9有9个数字,10-99有180个数字,100-999有2700个数字所以上册和下册都是页码都是3个数字的.那么上册书有(687-5×3)÷2+5×3=351个页码即(351-9-180)÷3=162÷3=54页则上册书有99页+54页=153页.8.一个自然数的数字和是35,这个数最小是几?解:这个数最小是8999.9.小强从家里到学校,如果每分钟走50米,上课就迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校。这学生从家到学校路程是多少米?解:回校所用时间:(3×50+2×60)
5、÷(60-50)27(分)小强到校路程:50×(27+3)1500(米)10.聪聪用十元钱买了三支圆珠笔和七本练习本,剩下的钱若买一支圆珠笔就少0.14元,若买练习本还多0.8元,1支圆珠笔多少元? 解:3圆珠笔+1支圆珠笔+7练习本=10+0.143圆珠笔+7练习本+1个练习本=10-0.8圆珠笔-练习本=0.94圆珠笔=1.52元练习本=0.58元工程问题1甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解:1/20+1/169/80表示甲
6、乙的工作效率9/80×545/80表示5小时后进水量1-45/8035/80表示还要的进水量35/80÷(9/80-1/10)35表示还要35小时注满答:5小时后还要35小时就能将水池注满。2修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/107/100,可知甲乙合
7、作工效>甲的工效>乙的工效。又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x1x10答:甲乙最短合作10天3一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×29/10表示甲做了2小时、乙做了4小时、丙
8、做了2小时的工作量。根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。所以19/101/10表示乙做6-42小时的工作量。1/10÷21/20表示乙的工作效率。1÷1/2020小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。4一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/
9、乙+1/甲+1/乙+1/甲11/乙+1/甲+1/乙+1/甲+1/乙+1/甲×0.51(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲1/乙×2又因为1/乙1/17所以1/甲2/17,甲等于17÷28.5天5师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 答案为300个120÷(4/5÷2)300个可以这样想:师傅第一次完成了1/2,第
10、二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。6一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 答案是15棵算式:1÷(1/6-1/10)15棵7一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?答案45分钟。1÷(1/20+1/30)12 表
11、示乙丙合作将满池水放完需要的分钟数。 1/12*(18-12)1/12*61/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。1/2÷181/36 表示甲每分钟进水最后就是1÷(1/20-1/36)45分钟。8某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别
12、做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×26天,就是甲的时间,也就是规定日期 方程方法:1/x+1/(x+2)×2+1/(x+2)×(x-2)1解得x69两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。解:设停电了x分钟根据题意列方程1-1/120*x(1-1/60*x)*2解得x40二鸡兔同笼问题1鸡与兔共100只,鸡的腿数比兔的腿数少28条,
13、问鸡与兔各有几只? 解:4*100400,400-0400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。400-28372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+26 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+26只(也就是原来的相差数是400-0400,现在的相差数为396-2394,相差数少了400-3946) 372÷662 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从
14、400改为28,一共改了372只 100-6238表示兔的只数三数字数位问题1把1至2005这2005个自然数依次写下来得到一个多位数123456789.2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:11999这些数的个位上的数字之和可以被9整除1019,20299099这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+90=450 它有能被
15、9整除 同样的道理,100900 百位上的数字之和为4500 同样被9整除 也就是说1999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:10001999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005从10001999千位上一共999个“1”的和是999,也能整除; 200020012002200320042005的各位数字之和是27,也刚好整除。 最后答案为余数为0。2A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值.解:(A-B)/(A+B) = (
16、A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。 对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求 (A+B)/B 的最大值。(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1(A+B)/B = 100(A-B)/(A+B) 的最大值是: 98 / 1003已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?答案为6.375或6.4375因为A/2 + B/4 + C/168A+4B+C/166.4,所
17、以8A+4B+C102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。当是102时,102/166.375当是103时,103/166.43754一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a100(16-2a)-10a-a198 解得a6,则a+17 16-2a4答:原数为476。5一个两位数,在它的前面写上3,所组成的三位
18、数比原两位数的7倍多24,求原来的两位数.答案为24解:设该两位数为a,则该三位数为300+a7a+24300+aa24答:该两位数为24。6把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?答案为121解:设原两位数为10a+b,则新两位数为10b+a它们的和就是10a+b+10b+a11(a+b)因为这个和是一个平方数,可以确定a+b11因此这个和就是11×11121答:它们的和为121。7一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714解:设原六位数为abcde2,则新六位数为2abc
19、de(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x根据题意得,(200000+x)×310x+2解得x85714所以原数就是857142答:原数为8571428有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963解:设原四位数为abcd,则新数为cdab,且d+b12,a+c9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d
20、+b12,可知d、b可能是3、9;4、8;5、7;6、6。再观察竖式中的个位,便可以知道只有当d3,b9;或d8,b4时成立。先取d3,b9代入竖式的百位,可以确定十位上有进位。 根据a+c9,可知a、c可能是1、8;2、7;3、6;4、5。 再观察竖式中的十位,便可知只有当c6,a3时成立。再代入竖式的千位,成立。得到:abcd3963再取d8,b4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。9有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab10a+b9b+610a+b5(a+
21、b)+3化简得到一样:5a+4b3由于a、b均为一位整数得到a3或7,b3或8原数为33或78均可以10如果现在是上午的10点21分,那么在经过28799.99(一共有20个9)分钟之后的时间将是几点几分?答案是10:20解:(287999(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20四排列组合问题1有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )A 768种 B 32种 C 24种 D 2的10次方中解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×
22、3×2×1120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷524种。第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×232种综合两步,就有24×32768种。2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种 B 36种 C 59种 D 48种解:5全排列5*4*3*2*1=120有两个l所以120/2=60原来有一种正确的所以60-1=59五容斥原理问题1 有100种赤贫.其中含钙的有68种
23、,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )A 43,25 B 32,25 C32,15 D 43,11解:根据容斥原理最小值68+43-10011最大值就是含铁的有43种2在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8解:根据“每个人至少答出三题中的一道题”可知答
24、题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。分别设各类的人数为a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a12325由(2)知:a2+a23(a3+ a23)×2由(3)知:a12+a13+a123a11由(4)知:a1a2+a3再由得a23a2a3×2再由得a12+a13+a123a2+a31然后将代入中,整理得到a2×4+a326由于a2、a3均表示人数,可以求出它们的整数解:当a26、5、4、3、2、1时,a32、6、10、14
25、、18、22又根据a23a2a3×2可知:a2>a3因此,符合条件的只有a26,a32。然后可以推出a18,a12+a13+a1237,a232,总人数8+6+2+7+225,检验所有条件均符。故只解出第二题的学生人数a26人。3一次考试共有5道试题。做对第1、2、3、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?答案:及格率至少为71。假设一共有100人考试100-955100-8020100-7921100-7426100-85155+20+21+26+1587(表示5题中有1题做错的最多
26、人数)87÷329(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)100-2971(及格的最少人数,其实都是全对的)及格率至少为71六抽屉原理、奇偶性问题1一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保
27、证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只) 答:最少要摸出9只手套,才能保证有3副同色的。2有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?答案为21解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法. 当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样.3某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和
28、黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?解:需要分情况讨论,因为无法确定其中黑球与白球的个数。 当黑球或白球其中没有大于或等于7个的,那么就是:6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是:6*5+3+134(个)如果黑球或白球其中有等于8个的,那么就是:6*5+2+133如果黑球或白球其中有等于9个的,那么就是:6*5+1+1324地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)不
29、可能。因为总数为1+9+15+315656/41414是一个偶数而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。七路程问题1狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米21x米,则狗跑5*4x20米。可以得出马与狗的速度比是21x:20x21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他
30、们相差的份数是21-201,现在求马的21份是多少路程,就是 30÷(21-20)×21630米2甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)720千米。3在一个600米的环形跑道上,兄两人同时从同一
31、个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?答案为两人跑一圈各要6分钟和12分钟。解:600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间4慢车车长125米,车速每秒行17
32、米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。5在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300÷(5-4.4)500秒,表示追及时间5×5002500米,表示甲追到乙时所行的路程2500
33、47;3008圈100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。6一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒算式:1360÷(1360÷340+57)22米/秒关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷3404秒的路程。也就是1360米一共用了4+5761秒。7猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的
34、路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。正确的答案是猎犬至少跑60米才能追上。解:由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*35/3a米。从而可知猎犬与兔子的速度比是2a:5/3a6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完8 AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达
35、B地要晚多少分钟?答案:18分钟解:设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解9甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?答案是300千米。解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*336
36、0千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)300千米从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米10一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?解:(1/6-1/8)÷21/48表示水速的分率2÷1/4896千米表示总路程11快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知
37、慢车行完全程需要8小时,求甲乙两地的路程。解:相遇是已行了全程的七分之四表示甲乙的速度比是4:3时间比为3:4所以快车行全程的时间为8/4*36小时6*33198千米12小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?解:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30返回时间系数:3/5÷12+2/5÷30两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3
38、7;30)=1/75相当于1/2小时去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75路程:12×1/2×(1/3÷12)÷1/75+30×1/2×(2/3÷30)1/75=37.5(千米)八比例问题1甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快答案:甲收8元,乙收2元。解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为3
39、0元,那么每条鱼价值6元。又因为“甲钓了三条”,相当于甲吃之前已经出资3*618元,“乙钓了两条”,相当于乙吃之前已经出资2*612元。而甲乙两人吃了的价值都是10元,所以甲还可以收回18-108元乙还可以收回12-102元刚好就是客人出的钱。2一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价
40、的22/25。3甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?解:原来甲.乙的速度比是5:4现在的甲:5×(1-20)4现在的乙:4×(1+20)4.8甲到B后,乙离A还有:5-4.80.2总路程:10÷0.2×(4+5)450千米4一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?答案为64:27解:根据“周长减少25”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是
41、原来的9/16。根据“体积增加1/3”,可知体积是原来的4/3。体积÷底面积高现在的高是4/3÷9/1664/27,也就是说现在的高是原来的高的64/27 或者现在的高:原来的高64/27:164:275某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?第二题:答案为65吨橘子+苹果30吨香蕉+橘子+梨45吨所以橘子+苹果+香蕉+橘子+梨75吨橘子÷(香蕉+苹果+橘子+梨)2/13说明:橘子是2份,香蕉+苹果+橘子+梨是13份橘子+香蕉+苹果+橘子+梨一共是2+1315份1、修一条长
42、2400米的公路,第一天修了全长的1/4,第二天修了余下的1/3,问还剩多少米?解:2400×1/4=600,2400600=1800,1800×1/3=600,1800600=1200答:还剩余1200米。2、甲、乙、丙三人有人民币若干元,丙的钱数比甲少1/10,丙的钱数又比乙多1/2,已知甲的钱数比乙的钱数多200元,求甲、乙、丙三人各有人民币多少元?解:方法一:设甲的钱数为X元,乙为(X-200)元,丙为9/10元;9/10X=3/2(X-200),0.9X=3/2(X-200),0.9X=1.5X-300,300=0.6X,X=300÷0.6,X=500方
43、法二:丙:甲=9/10:1=9:10,丙:乙=3/2:1=3:2=(3×3):(2×3)=9:6,甲:乙:丙=10:6:9;200÷(10-6)=50(元);50×10=500(元)甲,50×6=300(元)乙,50×9=450(元)丙答:甲、乙、丙分别为500、300、450元。3、某班男生人数是女生人数的5/4,最近又转来一名女生,结果女生人数成了男生人数的5/6,求现在全班有多少人?解:原来男:女=5:4=30:24;现在女:男=5:6=30:25;(2524)÷1=1(人);1×(30+25)=55(人)答
44、:全班有55人。4、水果店运来一批水果,第一天卖出1200千克,第二天比第一天多卖出1/8,这时还余下总数的1/4,求这批水果共有多少千克?解:1200×(1+1/8)=1350(千克);(12001350)÷(11/4)=3400(千克)答:共有3400千克。5、学校买来一批图书,放在两个书柜中,其中第一个书柜中的图书占这批图书的58%,如果从第一个书柜中取出32本,放到第二个书柜中,这时两个书柜的图书占这批图书的1/2,求这批图书共有多少本?解:32÷(58%1/2)=400(本)答:共有400本。6、五年级共有3个班,一班人数占全年级的10/33,三班人数比
45、二班人数多1/11,如果从三班调走4人后,和二班人数同样多,求五年级共有多少人?解:设二班有X人;12/11X4=X,12/11XX=4,1/11X=4,X=4÷1/11,X=44;44×(1+1/11)=48(人);(44+48)÷(110/33)=132(人)答:共有132人。7、甲、乙两人在银行共存款若干元,已知甲的存款数1/4等于乙存款数的1/5,又知乙比甲多存了24元,求甲、乙两人各存款多少元? 解:设乙存了X元,甲(X24)元;(X24)×1/4=1/5X,1/4X6=1/5X,1/4X1/5X=6,1/20X=6,X=6÷1/20
46、,X=120;12024=96(元)答:甲、乙两人各存款120、96元。8、乘汽车从甲城到乙城去,原计划5又1/2小时,由于途中有36千米的道路不平坦,走这段道路不平的道路时,速度相当于原来的3/4,因此晚到1/5小时,求甲、乙两城之间的距离。解:1/5÷(43)=1/5(小时),1/5×3=3/5(小时),36÷3/5=60(千米/小时),60×5又1/2=330(千米)答:距离是330千米。9、甲、乙两人从东、西两城相向而行,甲行了全程的5/11正好与乙相遇,已知甲每小时行4.5千米,乙走完全程需要5又1/2小时,求东、西两城相距多少千米?解:1
47、247;5又1/2=2/11(千米/小时),12/11=9/11(千米/小时),6/11÷2/11=3(小时),3×4.5=13.5(千米),13.5÷9/11=29.7(千米)答:东、西两城相距29.7千米。10、某超市运来红糖和白糖各一大袋,红糖重量的1/5比白糖重量的1/4还多2千克,两袋糖共重82千克,求红糖和白糖各多少千克? 解:设:红糖为X千克;1/5X1/4(82X)=2,1/5X82/4+1/4X=2,9/20X82/4=2,9/20X=2+82/4,X=50;8250=32(千克)答:红糖、白糖分别为50、32千克。11、两根电线共长52米,第一
48、根的1/4和第二根的2/5的和是16米,求两根电线各长多少米?解:设:第一根长X米;1/4X+(52X)×2/5=16,1/4X+104/52/5X=16,-3/20X+104/5=3/20X,24/5=3/20X,X=24/5 ×20/3,X=32;5232=20(米)答:第一根电线长32米,第二根电线长20米。12、兄弟4人合买一台彩电,老大出的钱是其他三人出钱总数的1/2,老二出的钱是另外三人出钱总数的1/3,老三出的钱是另外三人出钱总数的1/4,老四比老三我出40元,问这台彩电多少钱?解:11/31/41/5=13/60,13/601/5=1/60;40÷
49、1/60=2400(元) 答:这台彩电2400元。13、甲、乙两人星期天一起去买东西,两人身上所带的钱共计86元。在友谊商场,甲买一双运动鞋花去了所带钱的4/9,乙买一件衬衫花去了人民币16元。这样,两人身上所剩的钱正好一样多。甲、乙两人原先各带了多少钱?解:设甲带了X元;X4/9X=86X16,5/9X=70X,X+5/9X=70,14/9X=70,X=45;8645=41(元)答:甲、乙两人原先各带了45、41元。14、食堂运来一批大米,第一天吃了全部的2/5,第二天吃了余下的1/3,第三天吃了又余下的3/4,这时还剩下15千克,食堂共运来大米多少千克?解:15÷(13/4)
50、247;(11/3)÷(12/5)=150(千克)答:食堂共运来大米150千克。15、有大、小两种西红柿罐头,第一次买了2个小罐头,3个大罐头,共重5又9/10千克;第二次买了2个小罐头,7个大罐头,共重13又1/10千克,求大、小每个罐头各重多少千克?解:13又1/105又9/10=7.2;7.2÷(73)=1.8;(5又9/101.8 ×3)÷2=0.25(千克)答:大、小每个罐头各重1.8、0.25千克。16、有两本书,第一本书页数的1/2和第二本书页数的1/3合在一起是130页,第一本书页数的1/3和第二本书页数的1/2合在一起是120页,求这两
51、本书各是多少页?解:设:第一本有X页;1/3X+(1301/2X)×3×1/2=120,1/3X+(1301/2X)×3/2=120,1/3X+1953/4X=120,75=5/12X,X=180;(1301/2×180)×3=120(页)答:第一本有180页,第二本有120页。17、甲、乙、丙三人,甲、乙两人的体重之和是98又1/2千克,乙、丙两人的体重之和是112又1/2千克,甲、丙两人的体重之和是111千克,求三人的体重各是多少千克?解:(98.5+112.5+111)÷2=161(千克);16198.5=62.5(千克)甲;1
52、61112.5=48.5(千克)乙;161111=50(千克)丙。答:甲、乙、丙三人的体重各是62.5、48.5、50千克。18、有甲、乙两种金属,甲金属的1/16和乙金属的1/33重量相等,而乙金属的1/55比甲金属的1/40重7克,求两种金属各重多少克? 解:设:甲金属重量为X克;(1/40X+7)÷1/55=1/16X÷1/33,55/40X+385=33/16X,385=33/16X55/40X,385=11/16X,X=385÷11/16X,X=385÷11/16,X=560;(560 ×1/4+7)÷1/55=1155(克
53、)答:甲、乙两种金属各重560、1155克。19、一个书架分上下两层,共放书360本,如果把上层的1/10放入下层,上、下层的本数相等,求上、下层原来各放书多少本?解:设上层放书X本;1/10X+(360X)=9/10X,1/10X+360X=9/10X,360=9/10X1/10X+X,360=18/10X,X=200;360200=160(本)答:上、下层原来各放书200、160本。20、一瓶酒精,当用去了1/2,连瓶共重700克,当用去酒精的1/3后,连瓶共重800克,求瓶子的重量是多少克?解:1/21/3=1/6;800700=100;100÷1/6=600;600×1/2=300;700300=400(克)答:瓶子的重量是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级上册《藤野先生》教学课件
- 黑龙江省绥化市名校2024-2025学年初三中考全真模拟卷(七)生物试题含解析
- 昆明医科大学《试验设计与数据处理实验》2023-2024学年第二学期期末试卷
- 辽宁省葫芦岛市锦化高中2025届高三下第一次学情调查化学试题含解析
- 南昌工程学院《地基与基础工程》2023-2024学年第一学期期末试卷
- 西安汽车职业大学《大众足球》2023-2024学年第二学期期末试卷
- 浙江省宁波市海曙区2025届初三下学期二模(4月)语文试题含解析
- 上海市交大附属中学2025年高三下第一次阶段考化学试题试卷含解析
- 四川成都2025届高考模拟测试历史试题(二)含解析
- 邯郸市鸡泽一中高三上学期第一次月考数学试卷(文科)
- 2024-2025学年高中语文选择性必修下册 第2单元单元检测(原卷版)
- 急性胰腺炎完整版2024
- 网评员培训课件
- 哪吒主题课件模板文档
- 《四时用药例》教案-【中职专用】高二语文同步教学(高教版2023·拓展模块下册)
- 2025年宁波职业技术学院单招职业倾向性测试题库及答案(历年真题)
- 《基于PLC的交通信号灯控制系统的设计》5400字【论文】
- 2024年河南南阳师范学院开招聘笔试真题
- 高中数学复习 导数压轴大题归类 (原卷版)
- 手术部位标识国家标准(2023版)
- 数字政府建设发展研究报告(2024年)
评论
0/150
提交评论