数学分析习题课级数的收敛求和与展开PPT课件_第1页
数学分析习题课级数的收敛求和与展开PPT课件_第2页
数学分析习题课级数的收敛求和与展开PPT课件_第3页
数学分析习题课级数的收敛求和与展开PPT课件_第4页
数学分析习题课级数的收敛求和与展开PPT课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1)(0 xunn 求和)(xS展开(在收敛域内进行)(0 xunn基本问题基本问题:判别敛散;求收敛域;求和函数;级数展开.为傅立叶级数.xnbxnaxunnnsincos)(当为傅氏系数) 时,时为数项级数;0 xx 当nnnxaxu)(当时为幂级数;nnba ,(第1页/共30页2一、数项级数的审敛一、数项级数的审敛法法1. 利用部分和数列的极限判别级数的敛散性2. 正项级数审敛法必要条件0limnnu不满足发 散满足比值审敛法 limn1nunu根值审敛法nnnulim1收 敛发 散1不定 比较审敛法用它法判别积分判别法部分和极限1第2页/共30页33. 任意项级数审敛法任意项级数审敛

2、法为收敛级数1nnuLeibniz判别法判别法: 若,01nnuu且,0limnnu则交错级数nnnu1) 1(收敛 ,概念概念:且余项.1nnur1nnu若收敛 ,1nnu称绝对收敛1nnu若发散 ,1nnu称条件收敛第3页/共30页4例例1.1. 若级数若级数11nnnnba 与均收敛 , 且nnnbca, ),2, 1(n证明级数1nnc收敛 .证证: nnnnabac0, ),2,1(n则由题设)(1nnnab 收敛)(1nnnac 收敛1nnc)(1nnnnaac)(1nnnac 1nna收敛第4页/共30页5例2. 判别下列级数的敛散性:;1) 1 (1nnnn;2) !()2(1

3、22nnn;2cos)3(132nnnn;ln1)4(210nn. )0,0()5(1sanansn提示提示: (1) ,1limnnn有时当,Nn 11nn)1 (11nnnn据比较判别法, 原级数发散 .因调和级数发散,0N第5页/共30页6利用比值判别法利用比值判别法, 可知原级数发可知原级数发散散.用比值法, 可判断级数12nnn因 n 充分大时,ln1110nn原级数发散 . :2) !()2(122nnn:2cos)3(132nnnn:ln1)4(210nn: )0,0()5(1sanansn用比值判别法可知:时收敛 ;时, 与 p 级数比较可知时收敛;1s时发散.再由比较法可知原

4、级数收敛 .1s1a时发散.1a1a21nn发散,收敛,第6页/共30页7例例3. 设正项级数设正项级数1nnu和1nnv12)(nnnvu也收敛 .提示提示: 因,0limlimnnnnvu存在 N 0,nnnnvvuu22,又因)(222nnvu)()(2Nnvunn利用收敛级数的性质及比较判敛法易知结论正确.都收敛, 证明级数当n N 时2)(nnvu 第7页/共30页8例例4. 设级数设级数1nnu收敛 , 且,1limnnnuv1nnv是否也收敛?说明理由.但对任意项级数却不一定收敛 .,) 1(nunn问级数提示提示: 对正项级数,由比较判别法可知1nnv级数1nnu收敛 ,1nn

5、vnnnuvlim收敛,级数发散 .nnn) 1(lim11例如, 取nnvnn1) 1(第8页/共30页9;1ln) 1()3(1nnnn例例5.讨论下列级数的绝对收敛性与条件收敛性讨论下列级数的绝对收敛性与条件收敛性:;1) 1() 1(1npnn;sin) 1()2(1111nnnn.! ) 1() 1()4(11nnnnn提示提示: (1) P 1 时, 绝对收敛 ;0 p 1 时, 条件收敛 ;p0 时, 发散 .(2) 因各项取绝对值后所得强级数 原级数绝对收敛 .故 ,111收敛nn第9页/共30页1011ln) 1()3(nnnn)11(ln1lnnnnun因单调递减, 且但n

6、nn1ln1nknkk1ln)1ln(lim)1ln(limnn所以原级数仅条件收敛 .kknk1ln1nlim由Leibniz判别法知级数收敛 ;0limnnu第10页/共30页1111! ) 1() 1()4(nnnnn因nnuu12)2(! )2(nnn1)111 (12nnnn1! ) 1(nnnn11e所以原级数绝对收敛 .第11页/共30页12二、求幂级数收敛域的方二、求幂级数收敛域的方法法 标准形式幂级数: 先求收敛半径 R , 再讨论Rx 非标准形式幂级数通过换元转化为标准形式直接用比值法或根值法处的敛散性 .例7. 求下列级数的敛散区间:;)11 () 1 (12nnnxn.

7、2)2(21nnnxn第12页/共30页13 1 解解:nnnnnna)11 (limlim当ex1因此级数在端点发散 ,enn1)11 (nneu nn)11 ( nn)11 ( )(01ne. )1,1(eee时,12)11 () 1 (nnnxn,1eR exe11即时原级数收敛 .故收敛区间为第13页/共30页14nnnxn212)2()()(lim1xuxunnn解解: 因) 1(2121nnxn22xnnxn22,122x当时,即22x,2时当x故收敛区间为. )2,2(级数收敛;一般项nun不趋于0,nlim级数发散; 第14页/共30页15 求部分和式极限三、幂级数和函数的求法

8、三、幂级数和函数的求法 求和 映射变换法 逐项求导或求积分nnnxa0)(*xS对和式积分或求导)(xS难直接求和: 直接变换,间接求和: 转化成幂级数求和, 再代值求部分和等 初等变换法: 分解、套用公式(在收敛区间内) 数项级数 求和nnnxa0第15页/共30页16例例1. 求幂级求幂级数数.!) 12(1) 1(120的和函数nnnxnn法法1 易求出级数的收敛域为),(022)(! ) 12(1) 1(21nnnxn原式120! ) 12() 1(21nnnxnx)sin(21xx,cos2sin21xxx ),(x第16页/共30页17法法2 先求出收敛区间, )(xS则xnnnx

9、xxnnxxS01200d! ) 12(1) 1(d)(220! ) 12() 1(nnnxn21120! ) 12() 1(2nnnxnxxxsin2,cos2sin21)(xxxxS, ),(设和函数为),(x第17页/共30页18例例2.) 1()2(1nnnnx;212) 1() 1(21nnnxn解解: (1) )(21121nnnx原式) 120(2x12)2(1nnxx222211xxx22xx222)2(2xx显然 x = 0 时上式也正确,. )2,2(x故和函数为而在2xx0,)2(2)(222xxxS求下列幂级数的和函数:级数发散,第18页/共30页19nnxnn1111

10、xnntt011dxnnttx01d1ttxd110tttxxd1100 x)1ln(x)1(ln11xx)1(ln)11(1xx) 10( xttnnxd110ttxnnxd1101) 1()2(nnnnx第19页/共30页201) 1(nnnnx, )1(ln)11(1xx显然 x = 0 时, 和为 0 ; 根据和函数的连续性 , 有)(xS110, )1(ln)11(1xxxx及0 0 x,1 1x,10 xx = 1 时, 级数也收敛 . 即得第20页/共30页2100! )12() 1(! )2() 1(21nnnnnn例例3:0! ) 12(1) 1(nnnn解解: 原式=0!

11、)12() 1(nnn1cos21的和 .1) 12(n211sin求级数第21页/共30页22) 1 ,0()0, 1x)(xS, )1ln(1xx因此由和函数的连续性得:)(xS而)0(S,1)1 (lnlim0 xxx, )1ln(1xx,10 x,1) 10( x1x及第22页/共30页23例例8.2) 1(122的和求数项级数nnn解解: 设,1)(22nnnxxS则, )1, 1(x2112nnnxx21121nnnxx)0( x12nnnxx321nnnxxnnxnnxS111121)(2第23页/共30页24四、函数的幂级数展开法四、函数的幂级数展开法 直接展开法 间接展开法例

12、题例题:1. 将函数2)2(1x展开成 x 的幂级数. 利用已知展式的函数及幂级数性质 利用泰勒公式解解:xx21)2(1221121x0221nnnx,22111nnnxn)2,2(x1. 函数的幂级数展开法第24页/共30页252. 将将在x = 0处展为幂级数.)32ln()(2xxxf解解:)1ln(2ln)1ln()(23xxxf )1ln(x)32)(1 (322xxxx1nnnx) 11(x)1ln(23xnnnxn)(23) 1(11)(3232xnnnxn)(1 12ln231)(3232x因此2ln)(xf1nnnxnnnxn)() 1(2311第25页/共30页263.

13、设设)(xf0,arctan12xxxx0,1x, 将 f (x)展开成x 的幂级数 ,1241) 1(nnn的和. ( 01考研 )解解:211x,) 1(02nnnx)1 , 1(xxarctanxxx02d11,12) 1(012nnnxn1 , 1x)(xf1212) 1(1nnnxn02212) 1(nnnxn于是并求级数第26页/共30页2702212) 1(nnnxn12112) 1(nnnxn)(xf1212) 1(1nnnxn1212) 1(1nnnxn12121121) 1(1nnnxnn,41) 1(21122nnnxn1 , 1x1241) 1(nnn 1) 1 (21f214第27页/共30页28五、五、 函数的付式级数展开法函数的付式级数展开法系数公式及计算技巧; 收敛定理; 延拓方法xyo),上的表达式为 ),0,)0,0)(xexxfx将其展为傅氏级数 .na1xnxexdcos021)cossin(1nnxnxnex0),2, 1,0(11) 1(12nnen例题1. 设 f (x)是周期为2的函数, 它在解答提示解答提示第28页/共30页

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论