高速列车半主动悬挂(共7页)_第1页
高速列车半主动悬挂(共7页)_第2页
高速列车半主动悬挂(共7页)_第3页
高速列车半主动悬挂(共7页)_第4页
高速列车半主动悬挂(共7页)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上高速列车半主动悬挂系统的研究与发展 1.车辆悬挂系统概述列车悬挂控制系统的减振效果直接影响列车运行的平稳性和旅客乘坐的舒适度。对高速列车悬挂控制系统进行优化设计,是衰减列车横向振动、提高列车横向平稳性的有效方法,对我国高速列车的发展有着重要的现实意义。高速列车的悬挂系统与两个主要性能即平稳性和稳定性密切相关。目前应用的悬挂系统主要有三种:被动悬挂,全主动悬挂和半主动悬挂。传统的被动悬挂系统由于其弹性元件和阻尼元件的参数不能实时调节,因而不能使高速列车的乘坐平稳性和操作舒适性同时达到最优。全主动悬挂系统结构复杂,成本高,因而难以得到应用。阻尼可调的半主动悬挂系统与全主动

2、悬挂系统相比,虽然对振动控制的性能略差,但其结构相对简单,价格低廉,同时,在控制品质上又能接近于主动悬挂,因而有着广阔的应用前景。特别是磁流变减振器的出现,加快了半主动悬挂产业化的进程,半主动悬挂目前已经成为高速列车车辆悬挂控制领域研究的热点之一。2.半主动悬挂控制系统工作原理 半主动悬挂是为克服全主动悬挂系统所需较大的控制能量和高成本作动器而提出的。由于改变刚度同样需要较大的能量,而改变阻器的阻尼值相对容易实现。它与全主动悬挂控制系统不同之处在于:半主动悬挂系统用可控阻尼器代替主动悬挂系统中的主动力作动器,它与被动悬挂系统一样都是利用弹性元件与阻尼元件并联来支撑悬挂质量。但二系阻尼器是一个可

3、控阻尼器,控制系统通过实时调节阻尼值来控制阻尼力,从而改善悬挂系统的动力学性能。半主动悬挂系统在工作时,以消耗系统较少内部能量为约束条件,因此,基本不需要系统外部能量的输入,其用于控制阻尼器的能量相对于全主动悬挂所需要的能量是微不足道的,故也称无源主动悬挂控制系统。其原理如图1一8所示,如图1一9所示为半主动悬挂控制系统的方框图。半主动悬挂系统从轨道不平顺输入到车体振动输出的动力学模型与被动悬挂系统的相同。但二系悬挂阻尼器的阻尼值是根据车体振动而时变的参数,即半主动悬挂控制系统,按其可控阻尼器的调节特性又可分为:有级型半主动悬挂系统和无级型(或连续型)半主动悬挂系。 有级型半主动悬挂系统所用的

4、可控阻尼器的阻尼系数不能连续变化,它在生产加工时就采用分级阀门开关特性,其结构较简单,既可采用人工调节,也可通过传感器、控制装置构成自动调节系统。 连续型半主动悬挂系统的所采用的阻尼器,其阻尼系数是连续可调,即节流孔调节和减振液粘性调节两种类型。由传感器和控制装置构成反馈控制系统,其可采用的控制算法较为丰富,半主动悬挂系统的特点有:(1)半主动悬挂力发生装置为是减振器,因此控制系统有较高的稳定性,在故障等异常动作时,确保行车安全较为容易。(2)与主动悬挂不同,因不需要油压和气压等动力源,控制装置成本低、安装调试方便。(3)与主动悬挂一样,可以根据车体振动实时地控制二系作用力。大量资料表明:半主

5、动悬挂旨在以接近被动悬挂的造价和复杂程度来提供接近全主动悬挂的性能,不但有良好的性价比,而且能保失效状态下行车的稳定性和安全性。3.国内外主动/半主动悬挂研究和应用状况(1)国外主动/半主动悬挂系统的应用状况日本500系为了以提高舒适性为目标,在两头车厢(1,16号车厢)安装主动悬挂系统,而在安装受电弓的车厢上(5,13号车厢)和绿色车厢(8,9,10号车厢)上安装半主动悬挂系统。装用半主动悬挂装置后,列车的乘坐舒适性从“普通”区域提高到“良好”一“普通”区域。装用半主动悬挂系统的500系列新干线动车无论运行在明线或隧道内,都有改善乘坐舒适性的效果。可以确认,这种列车在300km/h速度运行时

6、的乘坐舒适性与以往270km/h速度运行时的一样或者更好。今后将以进一步改善乘坐舒适性为标,继续研究改进半主动悬挂系统的结构和性能。日本700系新干线采用了半有源悬挂系统。不仅在车体发生摇动时需要使减振器向抑制振动的方向动作,且在由于轨道的影响使转向架发生振动时,为使振动不向车体传递,也要求横向减振器具有相应的动力衰减能力。为此,需要测出车辆的横向运动加速度,控制衰减系数可变的横向减振器的动作,从而提高乘坐舒适性。与500系客车一样,本系统安装于两个头车(1号、16号车)、装有受电弓的车厢(5号、12号车)以及头等车厢,这对于实现“提供舒适性更好的客车”这一目标,具有明显的效果。2002年,东

7、日本旅客铁道株式会社在其E2系新干线车辆上安装了有源悬挂系统,利用气压作动器和H控制的主动悬挂装置,日本E2新干线列车部分车辆上安装的横向全主动悬挂系统由以下几个部分组成:安装在车体和转向架之间传统二系横向减振器的位置上的空气压力式作动器及其配套部件、车体上的加速度传感器、根据加速度信号处理风压伺服阀控制信号的控制元件、减振器和其它被动悬挂部件。这套系统考虑了车体的横移、摇头和测滚运动,采用H控制。由于起初确定的加权函数侧重于改善车辆在线路敞开地段运行工况下的舒适度,在运行试验中发现安装该横向主动悬挂系统的车辆在线路敞开地段的乘坐舒适度比普通车辆的乘坐舒适度高59dB,但在隧道内只能提高2dB

8、左右。在重新确定加权函数后,发现在隧道内该系统也能够将车辆的乘坐舒适度提高5dB左右。这充分说明在铁道车辆悬挂的H控制器设计过程中,合理地选取加权函数是很重要的。德国ICE2动车组的拖车上采用SGP400转向架,SGP400具有独特的横向主动控制系统”AQS”,在构架上安装2个水平的“空气弹簧风缸”,相当于一个在水平方向起作用的横向位置调整器,使车体在曲线上行驶时,能主动回到中心位置附近,从而大大改善横向舒适性。并且在弯道行驶时,具有与直道运行系统一样的舒适性。Siemens公司开发的SF600型高速转向架(最高运行速度250km/h),主要运用在ICE-T动车组上。SF600转向架二系横向采

9、用了主动弹簧加半主动阻尼器的悬挂系统,这个系统安装在已有车体倾摆系统和横向定位气动系统的转向架上。车体安装在由倾摆系统支承的上摇枕上,二系空气弹簧用以支承下枕梁,扭杆用作抗侧滚装置,一系悬挂装有圆弹簧和液压无源减振器,以半主动控制减振器代替传统的吹响和横向减振器,。每两节车的四台转向架上,与空气弹簧并联装有一套垂向和一套横向半主动减振系统。每节车上装有一套SIBA32诊断、控制系统和一套惯性传感系统。每台转向架上的垂向半主动减振系统装有:2个具有连续调节阻尼控制阀的垂向液压减振器、2个测量垂向减振器行程的非接触式旋转电位器、2个安装在转向架下枕梁上的垂向加速度计。每台转向架上的横向半主动减振系

10、统装有2个具有连续调节阻尼控制阀的横向液压减振器、2个装在液压缸上的横向行程传感器、1个装在转向架下枕梁的横向加速度计。(2)国内主动/半主动悬挂系统的研究状况西南交大的张开林等对采用LQG控制的铁道车辆横向主动悬挂系统进行了试验研究。试验采用1:8的半车模型,线路激扰为简单的正弦激扰,试验结果表明车体的横向共振振幅相对于被动悬挂能够减少80%。控制器假设车体的状态信号均可以测量,对转向架的状态则采用卡尔曼滤波进行估计获得。由于试验采用正弦激振,没有对被动悬挂的阻尼进行优化匹配,因此试验结果并不能如实反映主动悬挂的减振效果。西南交通大学的戴焕云教授对铁道车辆横向主动悬挂采用随机最优控制进行了仿

11、真研究,采用简单的两自由度车辆模型。控制器设计的目标是尽可能地同时减小车体最大横向加速度、二系悬挂的最大静挠度和主动悬挂力,为此,选用车体最大横向加速度、二系悬挂的最大静挠度、主动悬挂力三个量的加权平方和作为目标优化函数。仿真计算的结果表明,通过调整优化目标函数中各个项的加权系数,可以侧重于提高车辆的某项性能。其中减小车体最大横向振动加速度和减小二系悬挂的最大静挠度是相互矛盾的。西南交通大学的王月明博士研究了阻尼控制策略的两种实现方式:一是开关型阻尼控制规律,二是连续型阻尼控制规律。通过对采用无摇枕转向架的高速客车悬挂系统横向模型的仿真实验,研究了半主动阻尼控制改善车辆运行平稳性的有效性。结果

12、数据表明,与阻尼最优的被动悬挂相比,采用连续型阻尼控制策略,车体横向加速度响应的均方根值能降低20-25%,加速度最大值能降低40-50%,横向平稳性指标降低约10-15%。西南交通大学的曾京、戴焕云教授等对开关阻尼控制的铁道客车系统的动力学性能进行了研究,主要包括半主动减振器的阻尼参数和半主动悬挂系统的时滞对客车系统临界速度和随机响应的影响。计算表明,尽管半主动悬挂使客车系统的临界速度低于被动悬挂,构架的横向加速度和轮轨横向力也要大于被动悬挂,但它能够大大减小车体的横向振动加速度,改善旅客的乘坐舒适性。总体上说,国内对于铁道车辆主动/半主动悬挂的研究大都限于理论研究和计算机仿真研究,所采用的

13、车辆模型一般为较为简单的线性模型。4.半主动悬挂的关键技术决定半主动悬挂能否应用于实际的主要因素有两个:一是控制策略的研究,一个是可控阻尼器的研制。(1)半主动悬挂的控制策略半主动悬挂实际就是在被动悬挂的基础上,增加阻尼力自动调节装置。因此半主动悬挂的设计任务最终归结为:寻求合适的控制算法,使之能够根据铁道车辆的运行工况,自动地跟踪调节悬挂系统的阻尼力使悬挂系统隔振缓冲性能达到最佳状态,以保证铁道车辆在任意工况下都具有最佳的动力学胜能。铁道车辆横向振动系统是十分复杂的非线性动力系统,根据国内外已开展的技术研究和工程应用现状,半主动悬挂控制主要采用的方法可以归纳如下:1)最优控制线性最优控制方法

14、(LQG/LQR)以成本函数在无穷时间内积分,得到在不同权重系数情况下,系统能量和控制耗能最小为目标的悬挂系统主动和半主动控制算法。线性最优控制方法是半主动悬挂设计者使用最多的设计方法。它以被研究的车辆系统较为理想的模型作基础,采用受控对象的状态响应于控制输入的加权二次型为性能指标,同时在保证受控结构动态稳定的条件下实现最优控制。此控制方法中一般应用LQ(Liner Quadratic线性二次型)调节器控制理论或LQG(Liner Quadratic Gaussian 线性二次高斯型)控制理论对悬挂系统实行最优控制。采用LQR控制方法实施控制时,需将列车系统视为确定系统,而忽略其固有的不确定性

15、,即忽略随机激扰,因此这种控制方法无需用计算机进行在线计算。采用LQG控制策略实施控制比LQR控制更为完善,这种控制策略充分考虑了在确定的系统模型的条件下的环境不确定性,这种不确定性包括轨道随机激扰和测量噪声。2)鲁棒控制鲁棒控制就是试图描述被控对象的模型不确定性,并估计在某些特定界限下达到控制目标所留有的裕度。由于车辆半主动悬挂装置所处的环境以及自身的特点,在系统建模时总会引入建模误差,在设计控制器时必须考虑到各种不确定因素。不确定性会破坏系统的稳定性及性能,而不确定性又是不可避免的。因此,设计控制器时必须考虑不确定性对系统稳定性的影响,必须使设计的系统具有鲁棒性,即不仅对名义对象能具有要求

16、的稳定性和性能,而且在参数变化和摄动下仍要保持其稳定性和性能。鲁棒控制是在保证闭环系统各回路稳定的条件下,利用所设计的控制器使干扰噪声对系统输出影响最小的一种控制方法。鲁棒控制在设计中综合考虑系统的建模误差、非线性、抗干扰等因素,鲁棒控制方法适用于稳定性和可靠性作为首要目标的应用,同时过程的动态特性已知且不确定因素的变化范围可以预估。利用鲁棒控制方法设计的控制器可保证列车悬挂控制系统有较强的稳定鲁棒性和性能鲁棒性。由于鲁棒控制在设计中强调不确定性对悬挂系统的影响,需要在稳定鲁棒性和性能鲁棒性之间作折中选择,所得的控制效果是保守的。在建立悬挂鲁棒控制模型时,应充分估计模型误差范围,从而使控制性能

17、的保守性最小,以保证悬挂系统的设计指标。3)H控制方法H控制理论是80年代出现的新理论。它是在多变量系统频域法与鲁棒稳定性奇异值分析法基础上建立的最优控制理论。其研究对象主要是多变量线性定常系统。它给出了控制系统的一种崭新的综合方法基于H最优指标的系统化设计方法。H方法的主要优点是:.它可以将各种典型控制问题(如干扰抑制、鲁棒镇定、跟踪和模型匹配等问题)都归结为标准H问题,从而给出一种系统化设计方法。.H方法利用了输入输出模型,又利用了状态空间法的计算机辅助设计手段。而且,象经典方法那样,设计者可对所得频率响应形状寻求理想控制。.更重要的是,它既便于处理对象具有不确定性时的鲁棒控制问题,又能在

18、干扰频率谱不确定情况下得到满意的控制性能。目前,H控制策略在车辆的悬挂控制方面己经有了应用,然而基于H理论的鲁棒控制等在理论上尚未成熟。H能反映哪些指标,其实质内容如何,实际问题怎样转化成H优化问题等一些关键问题到目前为止还没有统一的说明;另外H控制的算法复杂,计算量大,必须在简化算法上作大量工作,才能在悬挂系统控制上应用。4)预测控制预测控制是指利用安装在机车或控制车上的信号收集系统来预估轨道的输入,并把所采集到的状态变量反馈给各车辆控制器以实施最优控制的一种控制策略。由于预测控制是一类基于模型的计算机控制算法,因此它是基于离散控制系统的。预测控制不但利用当前的和过去的偏差值,而且用预测模型

19、来预估过程未来的偏差值,以滚动确定当前的最优输入策略。预测控制具有以下特点:.对数学模型要求不高;.能直接处理具有纯滞后的过程;.具有良好的跟踪性能和较强的抗干扰能力;.对模型误差具有较强的鲁棒性。因此,更加符合工业过程的实际要求。由于列车大多是在同一轨道上反复行驶,基于以往的、既有的或实测的运行信息,结合传统的LQG/LQR控制方法可以实现预测控制,并达到较好的控制效果。施行预测控制时,为使执行机构能在预测点产生相应的动作,对行车速度的测量要求很高,很小的误差将会导致系统性能的急剧恶化。目前,预测控制正受到更多的关注,发表的研究报告较多,但预测控制方法的关键技术是信号精度不受干扰,并能精确反

20、映轨道不平顺的真实信5)决策控制这种控制方法是预先测量对不同的轨道和行驶条件下车辆的振动响应,并通过优化计算得到所需的最佳悬挂刚度和阻尼,存入主动悬挂控制系统ECU的ROM中,在进行实时控制悬挂系统时,ECU不断检测车辆行驶过程中的振动响应,通过决策判断查出对应工况下应选的最优或次优悬挂的K和C,控制执行机构做出响应。6)自适应控制自适应控制方法是一种拥有实时调节控制器的控制算法。列车悬挂振动系统是含有许多不确定因素的非线性动力系统,总是存在非线性、时变等因素,难以用线性时不变的定常反馈控制器达到预定的性能要求。由于自适应控制能够处理小范围缓变系统问题,因此,对于悬挂系统表现出来的非线性和老化

21、问题,采用自适应控制十分合适。目前的自适应控制是在假定缺乏完整的系统动态信息和工作环境未知的条件下进行控制的。应用于列车悬挂系统振动控制的自适应控制方法主要有自校正控制和模型参考自适应控制两种。自校正控制是一种将受控对象参数在线识别与控制器参数实时整定相结合的控制方法。采用自校正控制方法能适应悬挂载荷及元件特性的变化,并自动调整悬挂系统的控制器来降低车辆的振动。模型参考自适应控制是当外界激励条件和车辆自身参数变化时,被控车辆的振动输出仍能跟踪理想的参考模型,从而获得预期性能的控制方法。有关资料表明,采用自适应控制的悬挂阻尼减振系统,能较好地改善车辆行驶性能。在自适应控制方面研究不少,但自校正控

22、制需要在线辨识大量的结构参数,因而计算量大,实时性不好;模型参考控制同样涉及轨道不平顺信息的精度问题。另外,当悬挂系统参数由于突然的冲击而在较大的范围变化,自适应控制的鲁棒性将降低。7)神经网络控制人工神经网络是一个由大量处理单元(神经元)所组成的高度并行的非线性动力系统。它能对非线性特性进行学习和记忆,能以任意精度反映被学习对象的特征。采用神经网络控制无需对实际的悬挂作线性化处理,所控制的悬挂系统具有较强的适应能力,与用传统的LQ 控制器控制的悬挂相比性能更加优越。神经网络控制的基本思想是从仿生学的角度模拟人脑神经系统的运作方式,使机器具有人脑那样的感知、学习和推理能力。对控制科学而言,神经

23、网络的巨大吸引力在于以下几点:.神经网络本质上是非线性系统,能够充分逼近任意复杂的非线性关系;.具有高度的自适应性和自组织性,能够学习和适应严重不确定性系统的动态特性;.系统信息等势分布存贮在网络的各神经元及其连接权中,故有很强的鲁捧性和容错能力;.信息的并行处理方式使得快速进行大量运算成为可能。这些特点说明,神经网络在解决高度非线性和严重不确定性系统的控制方面有巨大潜力。可以说,采用传统控制理论解决的各种实际问题,几乎都可以用神经网络控制技术来解决,而许多传统控制技术不能解决的问题也可以用神经网络方法来解决。目前,神经网络控制领域许多成功的应用实例使人们看到了智能控制时代的到来。车辆半主动悬

24、挂系统是一非线性系统,采用常规的控制方式有一定的局限性。为了更好地逼近实际,获得更佳控制效果,近年来神经网络的控制方法越来越受到重视,由于神经网络可以逼近任意非线性函数,具有较强的学习功能,用做控制器和辨识器具有自适应能力,因此适用于车辆悬挂系统的建模和控制。由于受到当前神经网络硬件发展的制约,大规模应用的时代尚待时日;但具备简单功能的神经芯片的成功研制已经使人们受到了很大的鼓舞。由此可见,神经网络具有并行计算、分布式信息存储、容错能力强以及具备自适应学习功能等一系列优点。但神经网络不适于表达基于规则的知识,因此在对神经网络进行训练时,由于不能很好地利用已有的经验知识,只能将初始权值取为0或随

25、机数,从而增加了网络的训练时间或者陷入非要求的局部限值,这是神经网络的一个不足。同时,神经网络控制只能描述大量数据之间的复杂函数关系,难于理解,而且不能直接处理结构化的知识,它需要大量的训练数据,通过自学习的过程,并以并行分布结构来估计输入输出的映射关系。8)模糊控制模糊控制(Fuzzy Control)是把控制知识表示成语言变量的控制规则,再用这些规则去控制系统,适用于数学模型未知的、复杂的非线性系统的控制。它避开问题的数学模型,对人们关于某个控制问题成功或失败的经验进行加工,总结出知识,从中提炼出控制规则,用一系列的模糊条件语句构造系统的模糊语言变量模型,应用模糊推理方法,可以得到适合要求

26、的控制量。因此,模糊控制器是一种语言变量的控制器。模糊控制主要是依据人工操作员的经验,应用Fuzzy 集合理论进行控制。它具有以下特点:.不需已知被控对象的精确数学模型,一般只需提供现场操作人员的经验知识及操作数据。这样对一些复杂系统,如电液伺服系统,因难以建立精确数学模型,故不宜用经典或现代控制方法,更适用于采用模糊控制。.控制规则用语言变量表达,代替常规的数学变量,用简单的软硬件即可实现,较易建立语言变量规则,同时易于实现实时控制,控制方法简单。.控制系统的鲁棒性强,对过程参数的变化很不敏感,尤其适于时变的、非线性及滞后系统。另外,对于滞后系统能对纯滞后给予补偿。.模糊控制推理采用不精确推

27、理,推理过程模仿人的思维过程,由于介入了人类的经验,因而能够处理复杂甚至“病态”的系统。由上述可以看出,模糊控制不需要系统的精确数学模型,且具有较强的鲁棒性,有资料表明采用模糊控制的悬挂阻尼减振系统能较好地改善车辆运行性能,它在具有随机激励和复杂数学模型的车辆悬挂系统的应用中表现出了极强的优势。但是,模糊控制的精度低,算法过于复杂,使模糊控制方式暂时难以在工程应用中实现。要把它引入高速可靠的车辆悬挂控制中,需要对常规模糊控制器进行改进,或将其与现代控制理论的某些长处结合起来,构成复合控制策略。9)小结半主动控制技术是近年来铁道车辆研究领域发展的新兴学科,其为解决铁道车辆动力学性能的互不相容特性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论