版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角函数的诱导公式1一、选择题1如果|cosx|=cos(x+),则x的取值集合是( )A+2kx+2k B+2kx+2kC +2kx+2k D(2k+1)x2(k+1)(以上kZ)2sin()的值是( )A BCD3下列三角函数:sin(n+);cos(2n+);sin(2n+);cos(2n+1);sin(2n+1)(nZ)其中函数值与sin的值相同的是( )ABCD4若cos(+)=,且(,0),则tan(+)的值为( )ABCD5设A、B、C是三角形的三个内角,下列关系恒成立的是( )Acos(A+B)=cosCBsin(A+B)=sinC Ctan(A+B)=tanCDsin=sin
2、6函数f(x)=cos(xZ)的值域为( )A1,0,1B1,1C1,0,1D1,1二、填空题7若是第三象限角,则=_8sin21°+sin22°+sin23°+sin289°=_三、解答题9求值:sin(660°)cos420°tan330°cot(690°)10证明:11已知cos=,cos(+)=1,求证:cos(2+)=12 化简:13、求证:=tan14 求证:(1)sin()=cos;(2)cos(+)=sin参考答案1一、选择题1C 2A 3C 4B 5B 6B二、填空题 7sincos 8三、解答题
3、9+110证明:左边=,右边=,左边=右边,原等式成立11证明:cos(+)=1,+=2kcos(2+)=cos(+)=cos(+2k)=cos=12解:=113证明:左边=tan=右边,原等式成立14证明:(1)sin()=sin+()=sin()=cos(2)cos(+)=cos+(+)=cos(+)=sin 三角函数的诱导公式2一、选择题:1已知sin(+)=,则sin(-)值为( )A. B. C. D. 2cos(+)= ,<<,sin(-) 值为( )A. B. C. D. 3化简:得( )A.sin2+cos2 B.cos2-sin2 C.sin2-cos2 D.
4、177; (cos2-sin2)4已知和的终边关于x轴对称,则下列各式中正确的是( )A.sin=sin B. sin(-) =sin C.cos=cos D. cos(-) =-cos5设tan=-2, <<0,那么sin+cos(-)的值等于( ),A. (4+) B. (4-) C. (4±) D. (-4)二、填空题:6cos(-x)= ,x(-,),则x的值为 7tan=m,则 8|sin|=sin(-+),则的取值范围是 三、解答题:910已知:sin(x+)=,求sin(+cos2(-x)的值11 求下列三角函数值:(1)sin;(2)cos;(3)tan(
5、); 12 求下列三角函数值:(1)sin·cos·tan;(2)sin(2n+1).13设f()=,求f()的值.参考答案21C 2A 3C 4C 5A6± 7 8(2k-1) ,2k 9原式= sin 1011解:(1)sin=sin(2+)=sin=.(2)cos=cos(4+)=cos=.(3)tan()=cos(4+)=cos=.(4)sin(765°)=sin360°×(2)45°=sin(45°)=sin45°=.注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二
6、象限的角的三角函数,从而求值.12解:(1)sin·cos·tan=sin(+)·cos(4+)·tan(+)=(sin)·cos·tan=()··1=.(2)sin(2n+1)=sin()=sin=.13解:f()=cos1,f()=cos1=1=.三角函数公式1 同角三角函数基本关系式sin2cos2=1=tantancot=12 诱导公式 (奇变偶不变,符号看象限)(一) sin()sin sin(+)-sin cos()-cos cos(+)-costan()-tan tan(+)tansin(2)-sin
7、 sin(2+)sincos(2)cos cos(2+)costan(2)-tan tan(2+)tan(二) sin()cos sin(+)coscos()sin cos(+)- sintan()cot tan(+)-cotsin()-cos sin(+)-coscos()-sin cos(+)sintan()cot tan(+)-cotsin()sin cos()=cos tan()=tan3 两角和与差的三角函数cos(+)=coscossinsincos()=coscossinsinsin (+)=sincoscossinsin ()=sincoscossintan(+)= tan()
8、= 4 二倍角公式sin2=2sincoscos2=cos2sin22 cos2112 sin2tan2=5 公式的变形(1) 升幂公式:1cos22cos2 1cos22sin2(2) 降幂公式:cos2 sin2(3) 正切公式变形:tan+tantan(+)(1tantan) tantantan()(1tantan)(4) 万能公式(用tan表示其他三角函数值)sin2 cos2 tan26 插入辅助角公式asinxbcosx=sin(x+) (tan= )特殊地:sinx±cosxsin(x±)7 熟悉形式的变形(如何变形)1±sinx±cosx 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年护士个人工作计划范文
- 2025年年度健康教育工作计划
- 2025护士个人年度工作计划例文
- 2025年大学生学习计划
- Unit 8 Talent show Lesson 1 I'm from china(说课稿)-2023-2024学年北师大版(三起)英语四年级下册
- 2025年变电站工作计划
- 2025年电力工作计划
- 2025年度室内设计师工作计划书
- 人教版八年级上册 历史与社会 说课稿 3.2秦末农民起义与汉朝的建立1
- 2025年医师健康教育工作计划
- 对外投资合作国别(地区)指南 -泰国
- 2023年-2024年岗位安全教育培训试题及答案通用
- 口腔修复学(全套课件290p)课件
- 小学生心理问题的表现及应对措施【全国一等奖】
- 小学生科普人工智能
- 初中学段劳动任务清单(七到九年级)
- 退耕还林监理规划
- GB/T 1335.2-2008服装号型女子
- GB 31247-2014电缆及光缆燃烧性能分级
- DCC20网络型监视与报警
- 项目实施路径课件
评论
0/150
提交评论