下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数常见压轴题OxyABCD1、y=(以下几种分类的函数解析式就是这个)和最小,在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标差最大在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标 求面积最大 连接AC,在第四象限找一点P,使得面积最大,求出P坐标OxyABCD讨论直角三角 连接AC,在对称轴上找一点P,使得为直角三角形,求出P坐标或者在抛物线上求点P,使ACP是以AC为直角边的直角三角形OxyABCD讨论等腰三角 连接AC,在对称轴上找一点P,使得为等腰三角形,求出P坐标OxyABCD讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶
2、点的四边形为平行四边形,求点F的坐标OxyABC(2,-3)D2、这里小改动,把C(0,-3)改成C(2,-3)连接BC,在x轴上找一个点F,抛物线上找一点P,使得以B、C、F、G为顶点的四边形构成平行四边形 和最小差最大3、在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D.(1)求抛物线的解析式. (2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动. 设S=PQ2(cm2)试求出S与运动时间
3、t之间的函数关系式,并写出t的取值范围;当S取时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在,求出R点的坐标;如果不存在,请说明理由. (3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标. (第3题)4、如图13,抛物线y=ax2bxc(a0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小
4、.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过T作x的垂线,垂足为M,过点M作直线MNBD,交线段AD于点N,连接MD,使DNMBMD,若存在,求出点T的坐标;若不存在,说明理由. 5、如图,在平面直角坐标系中,点A、C的坐标分别为(1,0)、(0,),点B在x轴上已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点FyxBAFPx1CO(1)求该二次函数的解析式;(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(
5、3)求PBC面积的最大值,并求此时点P的坐标6、在平面直角坐标系中,已知抛物线经过A(4,0),B(0,4),C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值xyOBCMA(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标7、如图,抛物线y=ax2+2ax+c(a0)与y轴交于点C(0,4),与x轴交于点A(4,0)和B(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QEAC,交B
6、C于点E,连接CQ当CEQ的面积最大时,求点Q的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)问是否有直线l,使ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由讨论等腰8、如图,已知抛物线yx 2bxc与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,1)(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积最大时,求点D的坐标;DBCOAyxEBCOA备用图yx(3)在直线BC上是否存在一点P,使ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明
7、理由9、如图,已知抛物线yx 2bx3与x轴交于点B(3,0),与y轴交于点A,P是抛物线上的一个动点,点P的横坐标为m(m3),过点P作y轴的平行线PM,交直线AB于点MOABxyPM(1)求抛物线的解析式;(2)若以AB为直径的N与直线PM相切,求此时点M的坐标;(3)在点P的运动过程中,APM能否为等腰三角形?若能,求出点M的坐标;若不能,请说明理由论直角三角形10、如图,已知点A(一1,0)和点B(1,2),在坐标轴上确定点P,使得ABP为直角三角形,则满足这样条件的点P共有( )(A)2个 (B)4个 (C) 6个(D)7个11、已知:如图一次函数yx1的图象与x轴交于点A,与y轴交
8、于点B;二次函数yx 2bxc的图象与一次函数yx1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;OAByCxDE2(3)在x轴上是否存在点P,使得PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由11、如图,抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D(1)求该抛物线的解析式与顶点D的坐标;(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与BCD相似?若存在,请指出符合条
9、件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由OABxyCD讨论四边形12、二次函数yx 2pxq(p0)的图象与x轴交于A、B两点,与y轴交于点C(0,1),ABC的面积为(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ABC的外接圆有公共点,求m的取值范围;OACxyB(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由检测:(山东省烟台市)如图,抛物线yax 2bx3与x轴交于A,B两点,与y轴交于C点,且经过点(2,3a),对称轴是直线x1,顶点是M(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机场新员工入职培训
- 上海闵行职业技术学院《石油炼制工艺学》2023-2024学年第一学期期末试卷
- 上海民航职业技术学院《机械制造装备设计课程设计》2023-2024学年第一学期期末试卷
- 上海科学技术职业学院《金融学管理》2023-2024学年第一学期期末试卷
- 上海行健职业学院《建筑信息建模技术应用》2023-2024学年第一学期期末试卷
- 专题01 物质的变化和性质(课件)-中考化学一轮复习讲练测
- 公司人事管理制度展示汇编
- 上海海事职业技术学院《特殊教育研究方法》2023-2024学年第一学期期末试卷
- 上海海事职业技术学院《产品材料与加工工艺》2023-2024学年第一学期期末试卷
- 单位员工管理制度分享汇编
- 期末复习试题(试题)-2024-2025学年三年级上册数学苏教版
- 书法鉴赏 (浙江财大版)学习通超星期末考试答案章节答案2024年
- 绿植花卉租摆及园林养护服务投标方案(技术方案)
- 开票税点自动计算器
- 医疗器械质量安全风险会商管理制度
- 香文化与养生智慧树知到期末考试答案章节答案2024年浙江农林大学
- 浙江开放大学2024年《法律文化》形考作业1-4答案
- 《福建省安全生产条例》考试复习题库45题(含答案)
- 110kV变电站及110kV输电线路运维投标技术方案(第一部分)
- 医院关于成立死因监测领导小组的通知汇编三篇
- 幼儿园绘本故事:《小年兽》 课件
评论
0/150
提交评论