下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课 题:子集 全集 补集(1)教学目的:(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集(,)的概念;(3)使学生理解补集的概念;(4)使学生了解全集的意义教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析 在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系 本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性
2、质本节课讲重点是子集的概念,难点是弄清元素与子集、属于与包含之间的区别教学过程: 一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图 (2)用列举法表示下列集合: -1,1,2数字和为5的两位数 14,23,32,41,50(3)用描述法表示集合: (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合” -1,5问题:观察下列两组集合,说出集合A与集合B的关系(共性)(1)A=1,2,3,B=1,2,3,4,5(2)A=N,B=Q(3)A=-2,4,(集合A中的任何一个元素都是集合B的元素) 二、讲解新课: (一)
3、 子集1 定义:(1)子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A记作: ,AB或BA 读作:A包含于B或B包含A 当集合A不包含于集合B,或集合B不包含集合A时,则记作AB或BA注:有两种可能(1)A是B的一部分,;(2)A与B是同一集合(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B的真子集,记作:AB或BA, 读作A真包含于B或B
4、真包含A(4)子集与真子集符号的方向(5)空集是任何集合的子集A空集是任何非空集合的真子集A 若A,则A任何一个集合是它本身的子集(6)易混符号“”与“”:元素与集合之间是属于关系;集合与集合之间是包含关系如R,11,2,30与:0是含有一个元素0的集合,是不含任何元素的集合 如 0不能写成=0,0三、讲解范例:例1(1) 写出N,Z,Q,R的包含关系,并用文氏图表示(2) 判断下列写法是否正确A A AA 解(1):NZQR (2)正确;错误,因为A可能是空集 正确;错误例2 (1)填空:N_Z, N_Q, R_Z, R_Q, _0(2)若A=xR|x-3x-4=0,B=xZ|x|10,则A
5、B正确吗?(3)是否对任意一个集合A,都有AA,为什么?(4)集合a,b的子集有那些?(5)高一(1)班同学组成的集合A,高一年级同学组成的集合B,则A、B的关系为 .解:(1)NZ, NQ, RZ, RQ, 0(2)A=xR|x-3x-4=0-1,4,B=xZ|x|10=-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9AB正确(3)对任意一个集合A,都有AA,(4)集合a,b的子集有:、a、b、a,b(5)A、B的关系为.例3 解不等式x+32,并把结果用集合表示出来.解:xR|x+32=xR|x-1.四、练习:写出集合1,2,3的所有子集解:、1、2、3、1,2、1,3、2,3、1,2,3五、子集的个数:由例与练习题,可知 (1)集合a,b的所有子集的个数是4个,即 ,a,b,a,b (2) 集合a,b,c的所有子集的个数是8个,即 ,a,b,c,a,b,a,c,b,c,a,b,c 猜想:(1)集合a,b,c,d的所有子集的个数是多少?() (2)集合的所有子集的个数是多少?() 结论:含n个元素的集合的所有子集的个数是,所有真 子集的个数是-1,非空真子集数为六、小结:本节课学习了以下内容:1概念:子集、集合相等、真子集2性质:(1)空集是任何集合的子集A(2)空集是任何非空集合的真子集A (A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年海棠湾高端住宅区物业服务合同
- 2024年度影视制作合同:制片方与导演、演员等就影视制作的协议3篇
- 2024年林地使用权让渡合同版B版
- 2024年幕墙工程材料采购与质量控制合同2篇
- 2024年屋顶绿化工程劳务分包专业合同
- 商品购销合同范例简易
- 2024全新起重机转让与技术支持服务协议下载3篇
- 2024年市场推广居间协议3篇
- 卖买房屋合同模板
- 2024年城市综合体项目购买居间合同3篇
- 【MOOC】法理学-西南政法大学 中国大学慕课MOOC答案
- 辽宁省普通高中2024-2025学年高一上学期12月联合考试语文试题(含答案)
- 储能运维安全注意事项
- 2024蜀绣行业市场趋势分析报告
- 电力法律法规培训
- 【MOOC】信号与系统-北京邮电大学 中国大学慕课MOOC答案
- 2024年世界职业院校技能大赛“智能网联汽车技术组”参考试题库(含答案)
- 2024年商用密码应用安全性评估从业人员考核试题库-上(单选题)
- 幼儿园机器人课件ppt
- 如何做好期末复习冲刺期末考试主题班会教育课件ppt模板
- (2021年整理)eviews多元线性回归案例分析
评论
0/150
提交评论