大学物理之习题答案_第1页
大学物理之习题答案_第2页
大学物理之习题答案_第3页
大学物理之习题答案_第4页
大学物理之习题答案_第5页
已阅读5页,还剩98页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、单元一简谐振动一、 选择、填空题1 .对一个作简谐振动的物体,下面哪种说法是正确的?【C】(A)物体处在运动正方向的端点时,速度和加速度都达到最大值;(B)物体位于平衡位置且向负方向运动时,速度和加速度都为零;(C)物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D)物体处在负方向的端点时,速度最大,加速度为零。2 . 一沿X轴作简谐振动的弹簧振子,振幅为A,周期为T,振动方程用余弦函数表示,如果该振子的初相为4 ,则t=0时,质点的位置在: 3【D】(A)过x 1A处,向负方向运动;(B)过x 2A处,向正方向运动;22(C)过x1A处,向负方向运动;(D)过x 1A处,向正方向运

2、动。223 .将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为:【B】(A);(B) 0;(C) /2;(D) -4 .图(a)、(b)、(c)为三个不同的谐振动系统, 组成各系统的各弹簧的倔强系数及重 物质量如图所示,(a)、(b)、(c)三个振动系统的(为固有圆频率)值之比为:(A) 2:1:1;(B)1: 2: 4;(C) 4: 2: 1;(D) 1: 1: 2一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固【B】5.定的光滑斜面上如图,试判断下面哪种情况是正确的(A)竖直放置可作

3、简谐振动,放在光滑斜面上不能作简谐振动;(B)竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动;(C)两种情况都可作简谐振动;(D)两种情况都不能作简谐振动。6 . 一谐振子作振幅为A的谐振动,它的动能与势能相等时,它的相位和坐标分别为:【C】7 .如果外力按简谐振动的规律变化,但不等于振子的固有频率。那么,关于受迫振 动, 下 列 说 法 正 确 的 是:【B】(A)在稳定状态下,受迫振动的频率等于固有频率;(B)在稳定状态下,受迫振动的频率等于外力的频率;(C)在稳定状态下,受迫振动的振幅与固有频率无关;(D)在稳定状态下,外力所作的功大于阻尼损耗的功。8 . 关 于 共 振, 下 列

4、说 法 正 确 的 是: 【A】(A)当振子为无阻尼自由振子时,共振的速度振幅为无限大;(B)当振子为无阻尼自由振子时,共振的速度振幅很大,但不会无限大;(C)当振子为有阻尼振动时,位移振幅的极大值在固有频率处;(D)共振不是受迫振动。9 .下列几个方程,表示质点振动为“拍”现象的是: 【B】10 . 一质点作简谐振动,周期为 T,质点由平衡位置到二分之一最大位移处所需要的时间为T;由最大位移到二分之一最大位移处所需要的时间为-To12611 .两个同频率简谐交流电ii(t)和i2(t)的振动曲线如图所示,则位相差21 一 °212 . 一简谐振动用余弦函数表示,振动曲线如图所示,则

5、此简谐振动的三个特征量为:A=10 cm, rad / s , 一6313 . 一质量为m的质点在力F2x的作用下沿x轴运动(如图所示),其运动周期为2万。14 .试在图中画出谐振子的动能,振动势能和机械能随时间而变的三条曲线。(设t=0时物体经过平衡位置)填空选择(13)-i -dg,一只摆钟,在 g=9.80 g g15 .当重力加速度g改变dg时,单摆周期T的变化dTm/s2处走时准确,移到另一地点后每天快10s,该地点的重力加速度为9.8023m/s216 .有两个弹簧,质量忽略不计,原长都是 10cm第一个弹簧上端固定,下挂一个 质量为m的物体后,长11c项两第二个弹簧上端固定,下挂

6、一质量为 m的物体后, 长13c现 现将两弹簧串联,上端固定,下面仍挂一质量为m的物体,则两弹簧的总长为0.24 m 017 .两个同方向同频率的简谐振动,振动表达式分别为:21x1cos( t 2 ) () ,它们的合振动的振幅为8 10 2 m,初位相为1 0x2 2 10 2 sin(5t)(SI)2x1 Acos( t 一)318. 一质点同时参与了三个简谐振动,它们的振动方程分别为:x2 Acos( t )3x3 Acos( t )其合成运动的运动方程为 x 00二、 计算题1. 一物体沿x轴作简谐振动,振幅为10.0cm,周期为2.0 s0在t=0时坐标为5.0cm, 且向x轴负方

7、向运动,求在 x=-6.0cm处,向x轴负方向运动时,物体的速度和加速 度。x 10 cos( t 一) 3物体的振动方程:x Acos( t ),根据已知的初始条件得到:物体的速度:10 sin( t ) 3物体的加速度:a 10 2cos( t -)34当:x 6.0 cm 6 10cos( t 一),cos( t ), sin( t )33535根据物体向X轴的负方向运动的条件,sin( t -) 435所以:v 8102m/s, a 6 2 10 2 m/s22. 一质点按如下规律沿X轴作简谐振动:x(1)求此振动的周期、振幅、初相、速度最 大值和加速度最大值;(2)分别画出这振动的x

8、-t图。周期:t 2_ 1 s;4振幅:A 0.1 m ;初相位: ;3速度最大值:xmax A , xmax 0.8 m / S加速度最大值:xmax A 2 , xmax 6,2 m/s23 .定滑轮半径为R,转动TM量为J,轻绳绕过滑轮,一端与固定的轻弹簧连接,弹 簧的倔强系数为K;另一端挂一质量为m的物体,如图 微小距离后放手,试证物体作简谐振动,并求其振动周期。 轴的摩擦及空气阻力忽略不计)。以物体的平衡位置为原点建立如图所示的坐标。物体的运动方程: mg T1 mx滑轮的转动方程:(T1 T2)R J-x对于弹簧:T2 k( x x0) , kx0 mg由以上四个方程得到:令 2

9、k 仔m)现将m从平衡位置向下拉一 (设绳与滑轮间无滑动,计算题(3)x2x 0物体的运动微分方程:1m J物体作简谐振动。振动周期:T 2 jR24 . 一个轻弹簧在60N的拉力作用下可伸长 30cm)现将一物体悬挂在弹簧的下端并在 它上面放一小物体,它们的总质量为4kg。待静止后再把物体向下拉10c项然后释放。问:(1)此小物体是停在振动物体上面还是离开它?(2)如果使放在振动物体上的小物体与振动物体分离,则振幅A需满足何条件?二者在何位置开始分离?物体的振动方程: x Acos( t )根据题中给定的条件和初始条件得到:k , k -60 200 N/m00.3选取向下为X轴的正方向,t

10、 0:物体的位移为为正,速度为零。所以初位相0物体的振动方程: x 0.1cos5 2t物体的最大加速度:amax A 2 5m/s2小物体的运动方程:mg N ma,物体对小物体的支撑力:N mg ma小物体脱离物体的条件:N 0即 a g 9.8 m/s2,而 amax 5 m / s2 9.8 m / s2 max(1)此小物体停在振动物体上面;(2)如小物体与振动物体分离,小物体运动的加速度:a g 9.8 m/s2有:A 2 g , A -g2勺219犯,两个物体在振动最高点分离。5 .两个同振动方向,同频率的谐振动,它们的方程为Xi=5cos t (cm)和x 2=5cos( t+

11、 /2) (cm),如有另一个同振向同频率的谐振动,使得Xi, X2和X3三个谐振动的合振动为零。求第三个谐振动的振动方程。已知 Xi 5cos t , x2 5 cos( t -)21122arctg,A1 cos 1A2cos 25;,2 cos( t ) , x x' x3A)A2 A; 2AA2cos( 21 ) , A 5/2 cm40 , X3乂6.向 同频率的简谐振动:x1 0.05cos(10t1-),x2 0.06cos(10t ) (SI )5求合成振动的振幅和初相位;另有一个同振动方向的谐振动x3 0.07 cos(10t 3)(SI),问3为何值时X3的振幅为最

12、小Xi X3的振幅为最大,3为何值时X2 用旋转矢量图示(1)、的结果。(1) X 1和X2合振动的振幅:振 动 的 初 相 位A1 sin 1 A2 sin 2arctg A1 cos 1 A2 cos 2振动1和振动3叠加,当满足一3 一,31 2k ,即3 2k 时合5振动的振幅最大。振动2和振动3的叠加,当满足:3 2 ( 2k 1)1即3 (2k 1)振幅最小。5单元二简谐波波动方程一、选择题1 .频率为100HZ?,传播速度为300m/s的平面简谐波?,波线上两点振动的相位差为,则 此 两 点 相 距 :3【C】(A) 2m;(B) 2.19m;(C) 0.5m;(D) 28.6m

13、2?. 一平面余弦波在0时刻的波形曲线如图所示?,则。点的振动初位相为:【D】3 . 一平面简谐波?,其振幅为A?,频率为?,波沿X轴正方向传播?,设 时亥 波形如图所示?, 则 x=0 处质点振动方程为:【B】4 .某平面简谐波在t=0时的波形曲线和原点(x=0处)的振动曲线如图(a)(b)所示?, 则 该 简 谐 波 的 波 动 方 程 (SI) 为 :(h)选择题(4) 【C】5 .在简谐波传播过程中?,沿传播方向相距为一,(为波长)的两点的振动速度必2定:【A】(A)大小相同?,而方向相反?;(B)大小和方向均相同?;(C)大小不同?,方向相同;(D)大小不同?,而方向相反?。6 .横

14、波以波速u沿x轴负方向传播,t时刻的波形曲线如图,则该时刻:【D】(A) A点的振动速度大于零;(B) B点静止不动;(C) C点向下运动;(D) D点振动速度小于零7 .当机械波在媒质中传播时?,一媒质质元的最大变形量发生在: 【C】(A)媒质质元离开其平衡位置最大位移处;(B)媒质质元离开其平衡位置(巫)2处;(C)媒质质元在其平衡位置处;(D)媒质质元离开其平衡位置 £处(A是振动振2幅)。8 . 一平面简谐波在弹性媒质中传播?,在媒质质元从最大位移处回到平衡位置过程中:【C】(A)它的势能转换成动能;(B)它的动能转换成势能?;(C)它从相邻的一段媒质质元获得能量?,其能量逐

15、渐增加;(D)它把自己的能量传给相邻的一段媒质质元?,其能量逐渐减小?9. 一平面简谐波在弹性媒质中传播时移 处?, 则【B】(A)动能为零?,势能最大;(C)动能最大?,势能最大;?,在传播方向上媒质中某质元在负的最大位它 的 能 量 是(B)动能为零?,势能为零;(D)动能最大?,势能为零?。、填空题(SI) ?,其圆频率1. 一平面简谐波 的波动方程为 y=0.25cos(125t-0.37x)125rad/s,波速 u 337.80 m/s , 波长 16.97m?。2. 一平面简谐波沿 X轴正方向传播?,波速u=100m/s?, t=0时刻的波形曲线如图所j一I二A 0 巴 X填空题

16、(3)频率 125Hz?。3. 如图所示?,一平面简谐波沿OX轴正方向传播?,波长为 ?,若Pi点处质点的振 动方程为y1 Acos(2 vt ),则 P2点处质点的振动方程为 y Acos(2 t 2 L2);与Pi点处质点振动状态相同的那些点的位置是x kL1, k 1,2,3,4. 一简谐波沿。冲由负方向传播,x轴上Pi点处振动方程Pp10.04cos( t -)( SI ),填空题(5)轴P2点坐标减去Pi点坐标等于,(为波长)?,则P24点振动方程:yP 0.04 cos( t ) o5 .已知。点的振动曲线如图(a) ?,试在图(b)上画出x -处质点P的振动曲线?。46 .余弦波

17、y Acos (t勺在介质中传播?,介质密度为 ?,波的传播过程也是能量 c传播过程?,不同位相的波阵面所携带的能量也不同?,若在某一时刻去观察位相为 一2处的波阵面?,能量密度为 A 2;波阵面位相为处能量密度为0?。三、计算题1 .如图所示?,一平面简谐波沿OX轴传播?,波动方程为y Acos2 (vt -)?,求(1)P处质点的振动方程;(2)该质点的速度表达式与加速度表达式? oI tLP处质点的振动方程:y Acos2 (vt -)(x L, P处质点的振动位相超刖)J"P处质点的速度:v y 2A vsin2 (vt L) 计算题(1)P处质点的加速度:a y 4A 2v

18、2cos2 (vt L)2 .某质点作简谐振动?,周期为2s?,振幅为0.06m?,开始计时(t=0 )?,质点恰好 处在负向最大位移处?,求(1)该质点的振动方程;(2)此振动以速度u=2 m/s沿x轴正方向传播时?,形成的一维筒谐波的波动方程;(3)该波的波长?o质点作简谐振动的标准方程:y Acos(2 3),由初始条件得到:y 0.06cos( t )一维筒谐波的波动方程:y 0.06cos (t ),波长: uT ,4 m2,X 彳D-4 u *110 ADx计算题(3)3 . 一平面简谐波在介质中以速度u=20 m/s自左向右传播?,已知在传播路径上的某点 A的振动方程为y 3 c

19、os(4 t ) (SI),另一点D在A点右方9米处。(1)若取X轴方向向左?,并以A为坐标原点?,试写 出波动方程?,并求出D点的振动方程?;(2)若取X轴方向向右?,以A点左方5米处的。点 为x轴原点?,重新写出波动方程及 D点的振动 方程?。X轴方向向左,传播方向向右。A的振动方程:y 3cos(4 t )(坐标原点)波动方程:y 3cos4 (t高)将x9 m代入波动方程,得到 D点的振动方程:yD 3 cos(4 t )5取X轴方向向右,。点为X轴原点,。点的振动方程:yo 3 cos 4 (t )20波动方程:y 3cos 4 (t 2020)x,y 3cos4 (t '2

20、0)将x 14 m代入波动方程,得到D点的振动方程:yD 3cos( 4 t )5可见,对于给定的波动,某一点的振动方程与坐标原点以及X轴正方向的选取无关。4 . 一平面简谐波沿 OX轴的负方向传播,波长为,t=0时刻,P处质点的振动规律如图所示。(1)求P处质点的振动方程;(2)求此波的波动方程。若图中 d ,求坐2标原点O处质点的振动方程。P处质点的振动方程:yP Acos 2 T根据图中给出的条件:T 4s由初始条件:t 0, yP A, yP Acos t2原点O的振动方程:yo ACOS(t 2-d) (O点振动落后于P点的振动)2波动方程:y Acos( t 2 ( x-d ) 2

21、1 1如果:d 一 ,原点O的振动方程:yO Acos t2 2单元三波的干涉驻波多普勒效应一、 选择、填空题1 .如图所示,两列波长为的相干波在p点相遇,S1-点的初位相是1, S到P点的距离是1, S 2点的初位相是2, &到P点的距离是2,以k代表零或正、负整数,则p点是干涉极大的条件为:S?选择填空题(1)I;15m20",选择填空题(2)【D】2 .如图所示,Si, 8为两相干波源,其振幅皆为 0.5m,频率皆为100Hz,但当Si为 波峰时,S2点适为波谷,设在媒质中的波速为 10ms1,则两波抵达P点的相位差和 P点的合振幅为:【C】3 .两相干波源Si和S2的

22、振动方程是y1 Acos( t )和y2 Acos t , S距P点6个 2波长,4距P点为13.4个波长,两波在P点的相位差的绝对值是15.3 04 .在弦线上有一简谐波,其表达式为y1 2.0 102cos100 (t ) 土 (SI)为了在此弦 203线上形成驻波,并在 x=0处为一波腹,此弦线上还应有一简谐波,其表达式为: 【D】5 .如图所示,为一向右传播的简谐波在t时刻的波形图,BC为波密介质的反射面,波由 P 点反射,则反射波在 t 时刻的波形图为【B】6 .如果在固定端x=0处反射的反射波方程式是 y2 Acos2 (t二),设反射波无能量损失,那么入射波的方程式y1 Acos

23、2 ( t -),形成驻波的表达式x一y 2Acos(2 ) cos(2 t 一)。 227 .在绳上传播的入射波波动方程 y1 Acos( t 2),入射波在x=0处绳端反射,反 射端为自由端,设反射波不衰减,则反射波波动方程y2 Acos( t 三),形成驻波 波动方程 y 2Acos2-x cos t8 .弦线上的驻波方程为 y Acos(2且3)coscot,则振动势能总是为零的点的位置是x (2k 1);振动动能总是为零的位置是x k o42其中 k 0, 1, 2, 39.已知一驻波在t时刻各点振动到最大位移处, 其波形如图(A)所示,一行波在t时刻的波形如图(B) 所示,试分别在

24、图(A)、图(B)上注明所示的a、b、 c、d四点此时的运动速度的方向(设为横波)。(B7选择填空题(9)在图 A中:Va Vb Vc Vd 0二、计算题1.两列相干平面简谐波沿 X轴传播。波源S1 与S2相距d=30 m, Si为坐标原点。已知 xi=9 m 和X2=12 m处的两点是相邻的两个因干涉而静 止的点。求两波的波长和两波源的最小位相 差。选取X轴正方向向右,S向右传播,S向左 传播。两列波的波动方程:SiXjd=30m计算题(i). x _V1 Acos( t -2 )10x1 9m 和 x212m的两点为干涉相消。满足:2d x _(td-2 )20 ( t-2)10 (2k

25、1)两式相减:x2X1)2, 6m。由(2010)2(上 f (2k 1)得到(2010) (2k 1)4 , k 0,1,2,3,两波源的最小位相差:20102. (1)一列波长为 的平面简谐波沿 X轴正方向传播。已知在 x /2处振动方程 y=Acos t,试写出该平面简谐波的波动方程; 如果在上述波的波线上 x L(L/ 2)处放一和波线相垂直的波密介质反射面,如图,假设反射波的振幅为A'试证明反射波的方程为.a, 2 x 4 L、y' A cos( t )已知x/2处振动方程:y Acos t原点处。点的振动方程:2yo Acos( t ) , yo Acos( t )

26、平面简谐波的波动方程:y Acos( t 22)反射面处入射波的振动方程:反射面处反射波的振动方程:计算题(2)2 L 、y Acos( t)2 Ly' A'cos( t )(波疏到波密介质,反射波发生相变)反射波在原点O的振动方程:2 Iy'o A'cos( t 2)(反射波沿X轴负万向传播,O点的振动位相滞后)反射波的方程:yO A'cos(t 2-x 4-L)3.两列波在一根很长的细绳上传播,它们的方程为:yi 006cos (x 4t)y2 0.06cos (x 4t) 证明细绳上作驻波振动,并求波节和波腹的位置(2)波腹处的振幅有多大?在x=1

27、.2m处振幅有多大?y1 0.06 cos( x 4t ) , y1 0.06 cos(4 tx)向右传播的行波。V2 0.06 cos( x 4t ), 、2 0.06 cos(4tx)向左传播的行波。两列波的频率相等、且沿相反方向传播,因此细绳作驻波振动: y 2Acos xcos4 t波节满足:x (2k 1)-, x k k 0, 1, 2, 322波幅满足:x k , x k, k 0, 1, 2, 3波幅处的振幅:A 2Acosx,将x k和A 0.06m代入得至I: A 0.12m在 x 1.2m 处,振幅: A 2Acos x , A 0.12cos1.2|, A 0.097

28、m4.设入射波的表达式为y Acos2 (),在x=0发生反射,反射点为一固定 端,求:(1)反射波的表达式;(2)驻波的表达式; 波腹、波节的位置。入射波:y1 Acos2 (,-),反射点x=0为固定点,说明反射波存在半波损失。反射波的波动方程:y2 A cos 2 ( )根据波的叠加原理,驻波方程:y 2Acos(2 -+ 22 1)cos(2)将1 0和2代入得到:驻波方程:y 2Asin2 -cos(2 t -)2驻波的振幅:A合2 Asin 2 -波幅的位置:2 -(2k 1)-,x (2k 1)- ,k 0,1,2,3xk波干的位置:2 k , x, k 0,1,2,3 (因为波

29、只在x>0的仝间,k取正整数)5. 一驻波的表达式 y 2Acos2 cos t ,求:(1) x万处质点的振动表达式;(2)该质点的振动速度。驻波方程:y 2Acos2 xcos t ,在x 一处的质点,振幅: 2Acos2 - 2A2振动表达式:y 2Acos( t )该质点的振动速度: v y 2A sin( t ), v 2A sin t6. 一固定波源在海水中发射频率为的超声波,射在一艘运动的潜艇上反射回来,反射波与入射波的频率差为,潜艇的运动速度V远小于海水中的声速u,试证明潜艇运动的速度为:V 2根据多普勒效应,舰艇收到的信号频率:'(1 -)(波源静止,观察者背离

30、波u源运动)潜艇反射回来的信号频率:''(u)(观察者静止,波源背离观察者运动)u V''(士)(1 V) ,V ()(''),当 V U,'' 2 ,u V uVo 0.04cos(0.4 t -),该波的波动方程 y 0.04cos(0.4 t 5 x -)动方程。2 .如图一平面简谐波在t=0时刻的波形图,试在图(b)、画出P处质点和Q处质 点的振动曲线,并写出相应的振动方程。其中波速u 20m s1. x,y以米计,t以秒计。平面简谐波的方程为 y Acos (t -), y 0.2cos 2 (0.5t )-u40220

31、.P点振动万程:yp 0.2cos2 (0.5t ) 0.2cos t 4022Q 点 振 动 方 程:402若此时A3 .如图为一平面简谐波在t时刻的波形曲线,其中质量元A、B的点动能增大。则:【B】(A)A的弹性势能在减少;(B)波沿x轴负方向传播;(C)B点振动动能在减少;(D)各质量元的能量密度都不随时间变化。A点动能增大,说明波沿 X轴的负方向传播,答案 A、 C和D与情况不符。4 .如图所示,P点距波源S1和S的距离分别为3和10/3,为两列波在介质中的波长,若P点的合振幅总是极大值,则两波源应满足的条件是02 i 2k3根据两列波叠加,振幅具有最大值的条件为是两列波在P点振动的位

32、相差:两列波源的初位相差:0 2 12k 2 r2-1 2k 35 .如图所示,S1和&为两相干波源,它们的振动方向均垂直图面,发出波长为 的 简谐波。P点是两列波相遇区域一点,已知 SP=2 , S2P=2.2 ,两列波在P点发生的相消干涉,【D】若S的振动方程为yi Acos(2 t),则&的振动方程为:2两列波在P合成振动振幅的最小值条件为两列波在P点的位相差:(2 i) 2且上 (2k 1)两列波源的初位相差:21(2k 1)2 W (2k 1)k 0,2,所以:V2 Acos(2 t 0.1 )6 .如果入射波的方程式是 y Acos2 (1 3),在x=0处发生反射

33、后形成驻波,反射 点为波腹,设反射后波的强度不变,则反射波的方程式y2 Acos2 (:与;在x气 处质点合振动的振幅等于 A。反射波沿X轴正方向,且反射点为波腹,无半波损失。t xx所以 y2 Acos2 ( ),驻波方程: y 2Acos2 cos2 t将x 乙代入驻波方程,得到该处质点振幅为Ao3、计算题1. 一轻弹簧的倔强系数为 k,其下悬有一质量为 从离盘h高度处自由下落到盘中并和盘子粘在一起, 于是盘子开始振动(1)此时振动周期与空盘子作振动时的周期有何 不同?(2)此时的振动的振幅多大?(3)取平衡位置为原点,位移以向下为正,并以 弹簧开始振动时为计时起点,求初相,并写 出物体与

34、盘子的振动的方程。m的盘子,现有一质量为 M的物体尤 >9" "" "研究对象为倔强系数为k的弹簧、质量为m的盘子和质量为M的物体。选取系统的平衡点O原点,物体振动在任一位置时满足的方程:(mM )g k( xx0x'0 ) (m M )x式中:Mg kxo ,mg kx' o所以,2x 0,式中:2o计算题(1) 物体M未粘之前,托盘的振动周期:物体M粘之后,托盘的振动周期:T 2 Jm-M ,由此可见托盘振动的周期变 长。(2)物体M与托盘m碰撞,在X轴方向(垂直方向)动量近似守恒。M /2gh ( m M )v0, Vo J2

35、gh m M以物体粘上托盘开始运动为起始时刻:t 0, xo也,VokmMM、2gh托盘和物体振动的振幅:A , x22Vo2(Mb()22ghm Mkm M(3)振动的初位相:tg工,xoarctg2kh上(位移为负,速度为(m M )g正, 为第三象限),物体和托盘的振动方程:2.如图所示,两根相同的弹簧与质点m联接,放在光滑水平面上。弹簧另一端各固定在墙上,两端墙之间距离等于弹簧原长二倍,令 m沿水平面振动,当 m运动到二 墙中点时,将一质量为 M的质点轻轻地粘在 m上(设粘上m前,M的速度为0)。求M 与m粘上前后,振动系统的圆频率。m质点振动的微分方程:x 竺x 0mm质点振动的圆频

36、率:M与m粘上以后,系统振动的圆频率:',m MM与m粘上后,系统振动振幅的计算;设原来的振动振幅为A,粘上以后系统的振动振幅为 A' o在水平方向系统的动量守恒(平衡位置):mvmax (m M)v'max因为 Vmax A ',所以:A' 'Am MrM与m粘上后,系统振动振幅:A |AI m M3. 一平面简谐波沿X正方向传播,波函数x、Acos2 (vt )"求x=L处媒质质点振动的初位相; 与x=L处质点的振动状态在各时刻相同的其它质点位置;与x=L处质点在各时刻振动速度大小均相同,而振动方向均相反的各点的位 置。 x L处振

37、动方程:Acos 2 ( t -) o -2 L-、一,、Acos2 t ( 0) Acos(2 t ),初位相:(2) x L处质点在任意时刻的振动方程:Acos 2 ( t ) o距离原点x处的一点在任意时刻的振动方程:x Acos2 ( t )o 两各质点的振动状态一样,须满足:Lx2 ( t -)0 2 ( t -) 0 2k , x k L, k 1, 2, 3, 4,(3) x L处质点在任意时刻的振动速度方程:2 Asin 2 ( t -)。距离原点x处的一点在任意时刻的速度振动方程:x 2 Asin 2 ( t )0 如果速度大小一样,振动方向相反,须满足:Lx2 ( t )

38、0 2 ( t ) 0 (2k 1)x (2k 1)- L, k 1, 2, 3, 4, 2*4. 一平面余弦波沿X轴正向传播,已知a点的振动表示式为 a Acos t,在X轴原 点O的右侧l处有一厚度为D的媒质2,在媒质1和媒质2中的波速为ui和止,且 ,如图所示。(1)写出1区沿X正向传播的波的波函数;(2)写出在S面上反射波的波函数(设振幅为A1r);(3)写出在S2面上反射波在1区的波函数(设回到1区的反射波振幅为A2r);(4)若使上两列反射波在1区内叠加后的合振幅 A为最大,问媒质2的厚度D至 少应为多厚?da点振动万程为:a Acos t ,原点O处质点的振动万程:o Acos

39、(t 一)U1x d(1)1区沿X正方向的波函数:1 Acos (t )U1(2)在反射面S上,波是从波疏媒质到波密媒质,有半波损失。L d反射波在反射面S的质点振动方程:1R Acos (t)U1反射波在原点O的振动方程:01R Acos (t2上)U1反射波在1区沿X轴负方向波函数:1R Arcos (t x (2L d)U1(3)波传播到&面上时的振动方程:2 Acos (t xd -)u1u2在反射面S2上,波是从波密媒质到波疏媒质,无半波损失。反射波在反射面 &的质点振动方程:2R Acos (t)u1u2反射波在原点0的振动方程: O2R Acos (t 2Ld 型

40、)U1U2反射波在1区沿X轴负方向波函数:2R Acos t x (2L d) 2DU1U2 两列反射波在1区叠加,振幅A为最大,须满足:2D2D() 2k , 2k ,令 k = 1u2u2媒质2的厚度至少为:D22单元四(二)杨氏双缝实验一、填空题1 .相干光满足的条件是1)频至招回,2)似担差恒定;3)为医童振药方国壬在工 有两束相干光,频率为,初相相同,在空气中传播,若在相遇点它们几何路程差为则相位差2一(匕 )。c2 .光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光 强是4I0。可能出现的最小光强是 0。3 .在真空中沿Z轴负方向传播的平面电磁波,。点处电

41、场强度Ex 300cos(2 t -)用图示表明电场强度、磁场3(SI),则。点处磁场强度:强度和传播速度之间的关系4 .试分析在双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化?(A)双缝间距变小:条纹变宽(B)屏幕移近:条纹变室;(C)波长变长:条纹变宽二(D)如图所示,把双缝中的一条狭缝挡住,并在两缝垂直平分线上放一块平面反 射镜:看到的明条纹亮度暗一些,与杨氏双缝干涉相比较,明暗条纹相反;(E)将光源S向下移动到S位置:条纹上也幺二、计算题1 .在双缝干涉的实验中,用波长546nm的单色光照射,双缝与屏的距离D=300mm测得中央明条纹两侧的两个第五级明条纹之间的间距为12.2m

42、m求双缝间的距离。由在杨氏双缝干涉实验中,亮条纹的位置由x Dk来确定。d用波长546nm的单色光照射,得到两个第五级明条纹之间的间距:X5 D10d双缝间的距离:d 10X530094d 10 546 10 m, d 1.34 10 m12.22 .在一双缝实验中,缝间距为5.0mm缝离屏1.0m,在屏上可见到两个干涉花样。一个由 480nm的光产生,另一个由'600nm的光产生。问在屏上两个不同花样 第三级干涉条纹间的距离是多少 ?对于 480 nm的光,第三级条纹的位置:x D3d对于'600 nm的光,第三级条纹的位置:x' D3 'd那么:x 乂 x

43、3( '), x 7.2 105md单元五 双缝干涉(续)劈尖的干涉,牛顿环一、 选择、填空题1 .在相同的时间内,一束波长为 的单色光在空气中和在玻璃中:【C】(A)传播的路程相等,走过的光程相等;(B)传播的路程相等,走过的光程不相等;(C)传播的路程不相等,走过的光程相等;(D)传播的路程不相等,走过的光程不相等。2 .如图,如果S、S2是两个相干光源,它们到 P点的距离分别为 一、J和,路径SiP 垂直穿过一块厚度为 3,折射率为m的介质板,路径S2P垂直穿过厚度为t2,折射率 为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于:【B】3 .如图所示,在双缝干涉实验

44、中 SS = SS用波长为 的光照射双缝 S、通过空 气后在屏幕 上形成干涉条纹,已知P点处为第三级明条纹,则Si、&到P点的光程 差为3 0若将整个装置放于某种透明液体中, P点为第四级明条纹,则该液体的折 射率n 1.33。4 . 一双缝干涉装置,在空气中观察时干涉条纹间距为1.0mm,0.75 mm整个装置放在水中,干涉条纹的间距将为 (设水的折射率为4/3),1为入射光在折射率为束反射光在m的媒质中的波长,相遇点位相差为(A)2造;(B) 4 3;n1 1n1 1(D)/ n2e4 n1 15 .如图所示,平行单色光垂直照射到薄膜上,经上下 两表面反射的两束光发生干涉,若薄膜厚

45、度为e,而且6.璃两块平玻璃构成空气劈尖,左边为棱边,用单色平行光垂直入射,若上面的平玻慢 慢 地 向 上 平 移, 则 干 涉 条 纹选择填空题(7)选择填空题(8)向左平移(A)向棱边方向平移,条纹间隔变小;(B)向远离棱的方向平移,条纹间隔不变;(C)向棱边方向平移,条纹间隔变大;(D)向远离棱的方向平移,条纹间隔变小;(E)向棱边方向平移,条纹间隔不变。7 .如图所示,一光学平板玻璃A与待测工件B之间形成空气劈尖,用波长 =500 nm的单色光垂直入 射。看到的反射光的干涉条纹如图所示。有些条 纹弯曲部分的顶点恰好与其右边条纹的直线部分 相切。则工件的上表面缺陷是:【B】(A)不平处为

46、凸起纹,最大高度为500 nm;(B)不平处为凸起纹,最大高度为 250 nm;(C)不平处为凹槽,最大深度为 500 nm;(D)不平处为凹槽,最大深度为 250 nm8 .如图所示,用单色光垂直照射在观察牛顿环的装置上, 当平凸透镜向上缓慢平移 而远离平面玻璃时,可以观察到这些环状干涉条纹:(A)向右平移;(B)向中心收缩;(C)向外扩张;(D)静止不动; (E)9 .如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n=1.60的液体中,凸 透镜可沿OO移动,用波长=500 nm的单色光垂直入射。从上向下观察,看到中心 是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是【A】(A) 78.

47、1 nm ;(B) 74.4 nm ;(C) 156.3 nm ;(D) 148.8 nm ;(E)010 .在牛顿环装置的平凸透镜和平板玻璃间充以某种透明液体,观测到第10个明环的直径由充液前的14.8 cm变成充液后的12.7 cm ,则这种液体的折射率:n 1.36。二、计算题1 .在双缝干涉的实验装置中,幕到双缝的距离D远大于双缝之间的距离 d。整个双缝装置 放在空气中。对于钠黄光589.3nm,产生的干涉条纹相邻两明纹的角距离(即相邻两明纹对双缝中心处的张角)为 0.20 o对于什么波长的光,这个双缝装置所得相邻两明纹的角距离将比用钠黄光测得 的角距离大10%假想将此整个装置浸入水中

48、(水的折射率 n=1.33),相邻两明纹的角距离有多大?第k级明条纹的位置:xk Dk , tg k kkd由图中可以得到: 明条纹的角距离一(xk 1 xk ), D因为 D>>d tg k k已知 0.20 ,如果 '0.22 ,入射光波长 'd ',' 一 , ' 648.2 nm将此整个装置浸入水中,光在水中的波长:589.3nm ,' 443.1 nmn相邻两明纹的角距离:'-,'丝3/0.20°, 0.150589.32 .在折射率为n=1.68的平板玻璃表面涂一层折射率为n=1.38的 透明薄膜

49、,可以减少玻璃表面的反射光。若有波长 500 nm的单色光垂直入射,为了尽量减少 反射,则薄膜的最小厚度应是多少?透明薄膜上下两个表面反射光在相遇点的光程差:2e% (上下两个表面的反射光均有半波损失)。要求反射最小,满足 2en2 (2k 1 )2薄膜的最小厚度:emin4n2将门2 1.38和 500 nm带入得到:emin 9.058 10 8m3 .在双缝干涉实验中,单色光源 S0到两缝S、S2的距离分别为l1、l 2,并且1i l2 3 ,为入射 光的波长,双缝之间的距离为 d,双缝到屏幕的(2)相邻明条纹间的距离距离为D,如图,求:(1)零级明纹到屏幕中央 。点的距离;两缝发出的光

50、在相遇点的位相差:根据给出的条件:1020 3所以,6-2明条纹满足:2k , 6 2k , (k 3)明条纹的位置:x D , x D(k 3) dd令k 0,得到零级明条纹的位置:Xo 3D ,零级明条纹在。点上方。 d相邻明条纹间的距离:x Dd4 .用真空中波长=589.3nm的单色光垂直照射折射率为1.50的劈尖薄膜,产生等厚干涉条纹,测得相邻暗条纹间距l 0.15cm,那么劈尖角 应是多少?劈尖薄膜干涉中,条纹间距l sin1)-, 2nek k 2计算题(5)暗条纹的光程差满足:2nek 1(2k2暗条纹的厚度差:ek 一,劈尖角:2n5 .用波长为的平行单色光垂直照射图中所示的

51、装置,观察空气薄膜上下表面反 射光形成的等厚干涉条纹,试在图中所示 的装置下方的方框内画出相应的条纹,只画暗条纹,表示出它们的形状,条数和疏 密。劈尖空气薄膜干涉中,暗条纹的光程 差满足:12e -(2k 1)-, 2e k2 2B点干涉级数:2 7 k , k 3.5 4(k 1),将B点厚度带入得到:k 42即:B点不是暗条纹。明条纹的光程差满足:2e 1 k , 2e2说明B点是第_4.级明一条纹,暗条纹的形状,条数和疏密如图所示。6.在牛顿环装置的平凸透镜和平板玻璃之间充满折射率n=1.33的透明液体(设平凸透镜和平板玻璃的折射率都大于1.33),凸透镜的曲率半径为 300cm波长=6

52、50nm的平行单色光垂直照射到牛顿环装置上,凸透镜的顶部刚好与平玻璃板接触。求: 从中心向外数第十个明环所在处液体厚度a。;(2)第十个明环的半径rio0在牛顿环干涉实验中明环的光程差满足:2ne - k2明环所在处液体的厚度:e 里4n第十个明环所在处液体厚度:e-o 白土,e-o 2.3 10 6 m4n 2由e ,可以得到第10个明环的半径:r10以鬲,r-o 3.72 10 3 m2R单元六牛顿环(续)单缝衍射,光学仪器的分辨率一、 选择、填空题1 .惠更斯引进壬遗幽概念提出了惠更斯原理,菲涅耳再用于该旗干登如的思想补充了惠更斯原理,发展成了惠更斯 -菲涅耳原理。2 .平行单色光垂直入

53、射于单缝上, 观察夫琅和费衍射,若屏上P点处为第二级暗纹, 则单缝处波面相应地可划分为 4个半波带,若将单缝缩小一半,P点将是1级瞳纹,若衍射角增加,则单缝被分的半波带数增加/每个半波带的面积减小(与一 4个半 波带时的面积相比),相应明纹亮度减弱。3 .测量未知单缝宽度a的一种方法是:用已知波长的平行光垂直入射在单缝上,在距单缝的距离为 D处测出衍射花样的中央亮纹宽度L,(实验上应保证D 103a,或D为几米),则由单缝衍射的原理可标出 a与,D, L的关系为:a 2D-04 .如果单缝夫琅和费衍射的第一级暗纹发生在衍射角30°的方向上,所用单色光波长 500nm,则单缝宽度为1 m。5 . 一束波长 的平行单色光垂直入射到一单缝 AB上,装置如图,在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为 【A】(A);(B)/2;(C) 3 /2;(D) 26 .在单缝夫琅和费衍射示意图中,所画出的各条正入射光线间距相等,那末光线1与3在幕上P点上相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论