版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、苏州市2018届高三调研测试 数学试题 20181一、填空题:本大题共14小题,每小题5分,共计70分不需要写出解答过程,请把答案直接填在答题卡相应位置上1已知i为虚数单位,复数的模为 2已知集合,且,则正整数 3在平面直角坐标系xOy中,抛物线的焦点坐标为 4苏州轨道交通1号线每5分钟一班,其中,列车在车站停留0.5分钟,假设乘客到达站台的时刻是随机的,则该乘客到达站台立即能乘上车的概率为 5已知,则正实数 v¬1,i¬n1v¬vx+ii¬i1输出vNY开始结束输入n,xi0(第6题图)6秦九韶是我国南宋时期的数学家,他在所著的数书九章中提出的多项式求
2、值的秦九韶算法,至今仍是比较先进的算法右边的流程图是秦九韶算法的一个实例若输入n,x的值分别为3,3,则输出v的值为 7已知变量x,y满足则的最大值为 8已知等比数列的前n项和为,且,则的值为 9鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为 (容器壁的厚度忽略不计,结果保留)(第9题图)DCBA(第10题图)10如图,两座建筑物AB,CD的高度分别是9m和15m
3、,从建筑物AB的顶部A看建筑物CD的张角,则这两座建筑物AB和CD的底部之间的距离 m 11在平面直角坐标系xOy中,已知过点的圆和直线 x + y = 1相切,且圆心在直线 y = -2x 上,则圆C的标准方程为 12已知正实数a,b,c满足,则的取值范围是 PFECBA(第13题图)13如图,ABC为等腰三角形,以A为圆心,1为半径的圆分别交AB,AC与点E,F,点P是劣弧上的一点,则的取值范围是 14已知直线ya分别与直线,曲线交于点A,B,则线段AB长度的最小值为 二、解答题:本大题共6小题,共计90分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤15(本小题满分1
4、4分)已知函数(1)求函数的最小值,并写出取得最小值时自变量x的取值集合;(2)若,求函数的单调增区间16(本小题满分14分)如图,在正方体中,已知E,F,G,H分别是A1D1,B1C1,D1D,C1C的中点(1)求证:EF平面ABHG;A1B1C1D1ABCDEFGH(2)求证:平面ABHG平面CFED17. (本小题满分14分)如图,B,C分别是海岸线上的两个城市,两城市间由笔直的海滨公路相连,B,C之间的距离为100km,海岛A在城市B的正东方50处从海岛A到城市C,先乘船按北偏西角(,其中锐角的正切值为)航行到海岸公路P处登陆,再换乘汽车到城市C已知船速为25km/h,车速为75km/
5、h. (1)试建立由A经P到C所用时间与的函数解析式;BCP东北A(2)试确定登陆点P的位置,使所用时间最少,并说明理由18(本小题满分16分)在平面直角坐标系xOy中,椭圆的离心率为,椭圆上动点到一个焦点的距离的最小值为(1)求椭圆C的标准方程;(2)已知过点的动直线l与椭圆C交于 A,B 两点,试判断以AB为直径的圆是否恒过定点,并说明理由OyxBAM19. (本小题满分16分)已知各项是正数的数列的前n项和为(1)若(nÎN*,n2),且求数列的通项公式;若对任意恒成立,求实数的取值范围;(2)数列是公比为q(q0, q¹1)的等比数列,且an的前n项积为若存在正整数
6、k,对任意nÎN*,使得为定值,求首项的值20. (本小题满分16分)已知函数(1)当时,求函数的单调区间;(2)若方程在区间(0,+¥)上有实数解,求实数a的取值范围;(3)若存在实数,且,使得,求证:2018届高三调研测试 数学(附加题) 2018121【选做题】本题包括、四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分解答时应写出文字说明、证明过程或演算步骤选修4 - 1:几何证明选讲(本小题满分10分)如图,与圆O分别切于点B,C,点P为圆O上异于点B,C的任意一点,于点D,于点E,于点F. DPFEOCBA求证:.选修4 - 2:矩阵
7、与变换(本小题满分10分)已知,求选修4 - 4:坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,若直线l与曲线C相交于A,B两点,求AOB的面积选修4 - 5:不等式选讲(本小题满分10分)已知a,b,cR,若对一切实数a,b,c恒成立,求实数x的取值范围【必做题】第22题、第23题,每题10分,共计20分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤22(本小题满分10分)如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且ABBP2,
8、AD=AE=1,AEAB,且AEBP(1)求平面PCD与平面ABPE所成的二面角的余弦值;PNEDCBAzyx(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由23(本小题满分10分)在正整数集上定义函数,满足,且(1)求证:;(2)是否存在实数a,b,使,对任意正整数n恒成立,并证明你的结论苏州市2018届高三调研测试数学试卷参考答案一、填空题(共70分)122345648789101811121314二、解答题(共90分)15. 解(1)2分4分当,即时,取得最小值0此时,取得最小值时自变量x的取值集合为7分(注:结果
9、不写集合形式扣1分)(2)因为,令,8分解得,10分又,令,令,所以函数在的单调增区间是和14分(注:如果写成两区间的并集,扣1分,其中写对一个区间给2分)A1B1C1D1ABCDEFGHP16. 证明:(1)因为E,F是A1D1,B1C1的中点,所以,在正方体中,A1B1AB,(注:缺少A1B1AB扣1分)所以3分又平面ABHG,AB平面ABHG,(注:缺少AB平面ABHG不扣分)所以EF平面ABHG6分(2)在正方体ABCDA1B1C1D1中,CD 平面BB1C1C,又平面,所以8分设,BCH,所以,因为HBC+PHC=90°,所以+PHC=90°所以,即11分由,又,
10、DC,CFÌ平面CFED,所以平面CFED又平面ABHG,所以平面ABHG平面CFED14分 (注:缺少平面ABHG,此三分段不给分)17. 解(1)由题意,轮船航行的方位角为,所以,则, 4分(注:AP,BP写对一个给2分)由A到P所用的时间为,由P到C所用的时间为,6分所以由A经P到C所用时间与的函数关系为8分函数的定义域为,其中锐角的正切值为. (2)由(1),令,解得,10分设0Î,使00减函数极小值增函数12分所以,当时函数f()取得最小值,此时BP=17.68 ,答:在BC上选择距离B为17.68 处为登陆点,所用时间最少14分(注:结果保留根号,不扣分)18.
11、 解(1)由题意,故,1分又椭圆上动点到一个焦点的距离的最小值为,所以,2分解得,所以,4分所以椭圆C的标准方程为.6分(2)当直线l的斜率为0时,令,则,此时以AB为直径的圆的方程为7分当直线l的斜率不存在时,以AB为直径的圆的方程为,8分联立解得,即两圆过点猜想以AB为直径的圆恒过定点9分对一般情况证明如下:设过点的直线l的方程为与椭圆C交于,则整理得,所以12分(注:如果不猜想,直接写出上面的联立方程、韦达定理,正确的给3分)因为,所以所以存在以AB为直径的圆恒过定点T,且定点T的坐标为16分19. 解(1)当时,由 则 -得,即,2分当时,由知,即,解得或(舍),所以,即数列为等差数列
12、,且首项,所以数列的通项公式为.5分(注:不验证扣1分)由知,所以,由题意可得对一切恒成立,记,则,所以,8分当时,当时,且,所以当时,取得最大值,所以实数的取值范围为.11分(2)由题意,设(),两边取常用对数, 令,则数列是以为首项,为公差的等差数列,13分若为定值,令,则,即对恒成立,因为,问题等价于将代入,解得.因为,所以,所以,又故.16分20. 解(1)当时,当时,则,令,解得或(舍),所以时, 所以函数在区间上为减函数.2分当时,令,解得,当时,当时,所以函数在区间上为减函数,在区间上为增函数,且.4分综上,函数的单调减区间为和,单调增区间为5分(注:将单调减区间为和写出的扣1分
13、)(2)设,则,所以,由题意,在区间上有解,等价于在区间上有解.6分记,则,7分令,因为,所以,故解得,当时,当时,所以函数在区间上单调递减,在区间上单调递增,故函数在处取得最小值.9分要使方程在区间上有解,当且仅当,综上,满足题意的实数a的取值范围为.10分(3)由题意,当时,此时函数在上单调递增,由,可得,与条件矛盾,所以.11分令,解得,当时,当时,所以函数在上单调递减,在上单调递增.若存在,则介于m,n之间,12分不妨设,因为在上单调递减,在上单调递增,且,所以当时,由,可得,故,又在上单调递减,且,所以所以,同理14分即解得,所以.16分2018届高三调研测试数学附加题参考答案21B
14、 选修42 矩阵与变换解 矩阵的特征多项式为,2分令,解得,解得属于1的一个特征向量为,属于2的一个特征向量为5分令,即,所以解得7分所以10分21C 选修44 坐标系与参数方程解 由曲线C的极坐标方程是,得2sin2=2cos所以曲线C的直角坐标方程是y2=2x2分由直线l的参数方程 (t为参数),得,所以直线l的普通方程为4分将直线l的参数方程代入曲线C的普通方程y2=2x,得,设A,B两点对应的参数分别为t1,t2,所以,7分因为原点到直线的距离,所以AOB的面积是10分21D 选修45 不等式选讲解 因为a,b,cR,由柯西不等式得,4分因为对一切实数a,b,c恒成立,所以当时,即;当时,不成立;当时,即;综上,实数x的取值范围为10分22. 解(1)因为平面ABCD平面ABEP,平面ABCD平面ABEPAB,BPAB,所以BP平面ABCD,又ABBC,所以直线BA,BP,BC两两垂直, 以B为原点,分别以BA,BP,BC为x轴,y轴,z轴建立如图所示的空间直角坐标系,则P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1),因为BC平面ABPE,所以为平面ABPE的一个法向量, 2分,设平面PCD的一个法向量为,则 即令,则,故,4分设平面PCD与平面ABPE所成的二面角为,则,显然,所以平面PCD与平面ABPE所成二面角的余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶文化教育在小学商业素养培养中的作用
- 董海霞二年级语文《葡萄沟》教学设计新
- DB4415T 48-2025茶角胸叶甲综合防控技术规程
- LED广告屏幕安装与维护合同模板
- 个人消费贷款合同范例
- 二手住宅买卖合同正规范本
- 二手房分期付款合同书
- 不履行购销合同纠纷案解析
- 专利权转让及合作协议合同书
- 专项企业产(股)权托管合同文本
- 2025年中国黄芪提取物市场调查研究报告
- 安徽省定远重点中学2024-2025学年第一学期高二物理期末考试(含答案)
- 教育教学质量经验交流会上校长讲话:聚焦课堂关注个体全面提升教育教学质量
- 2024人教新目标(Go for it)八年级英语上册【第1-10单元】全册 知识点总结
- 北京市北师大附中2024-2025学年高一上学期期末考试数学试卷(含答案)
- 企业新员工培训师带徒方案
- 美容美发行业卫生管理规范
- 年终总结总经理讲话
- 2024-2025学年北师大版数学八年级上册期末综合测试卷
- 培训机构校区管理规划
- 七年级英语阅读理解55篇(含答案)
评论
0/150
提交评论