菲涅尔转换的数值计算_第1页
菲涅尔转换的数值计算_第2页
菲涅尔转换的数值计算_第3页
菲涅尔转换的数值计算_第4页
菲涅尔转换的数值计算_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、菲涅尔转换的数值计算在这篇论文中,我们通过均匀空间采样所获得的有限数值来处理计算菲涅尔转换积分这一问题。通常简单的数值采样规则能够让使用者对于任何散射距离都能计算出他的分布。这些规则是如何被扩展到利用基于快速傅里叶变换这一算法来提高计算效率的,在这篇论文中也有所解释。这篇论文也把本方法与其他理论方法做了比较。1、 引言光的传播和衍射是个经典问题,在当下仍十分重要。麦斯威尔等式为检测光的行为提供了一个严格的框架,他把光描述成一种电磁波。电场和磁场组成部分的行为都应该特别的考虑,例如,当分析数值孔径高的镜头,就如在显微镜中或者是为平面等离子体匹配模式时发现的。然而在许多场合,对于一个给定的物理问题

2、进行模式匹配时,电磁场的全矢量描述是不需要的,一个简单地标量模型可以用在这里。用一个标量模型去表示一个光学场是一个有用的近似表示。在光学制度中,它为光通过孔径(在这里孔径的大小远大于光波长)的衍射提供了一个高度准确的预测,可参见【1】的实验结果。其他相关理论和数值计算在【2,3】中被提出来了。在这篇论文中我们假设一个标量模型对于我们的目的是足够精确的。在光传输的标量描述中,区分以下两个定义是非常有用的,即傍轴和非傍轴衍射积分。两类衍射积分来自于麦斯威尔等式,参见【4,5】。然而在傍轴处理过程中,在推倒时应做更多的近似处理。因此,傍轴模式更加脱离于真实的衍射基础物理过程,伴随着这个结论还有非傍轴

3、衍射积分被认为是更加的准确。我们参见在【4】的3、4章中写的衍射处理,并且据此把基尔霍夫定律或瑞利-索末菲第一和第二定律归类为非傍轴衍射积分。菲涅尔转换是一个傍轴衍射积分。在这篇论文中我们用有限的采样数值来研究菲涅尔转换的数值计算问题。这是因为数值模拟技术对模拟光传输和为没有解析解的普通衍射问题计算解析解是相当重要的。菲涅尔转换在数字全息术【6-12】、迭代相位检索【13-15】和估计相位分布的强度方式的传输中扮演着不可缺少的角色,估计相位分布的强度方式的传输在生物图像应用【16,17】中起着重要的作用。菲涅尔转换也广泛应用于针对波束成形【18,19】的衍射光学元件的设计中,在计量应用中衍射光

4、斑区域的去相关也被应用于判定变形,例如,在测试时光学粗糙表面的压力、应变以及裂缝,【20,22】,或者是位移和倾斜的检测【23,24】。在这所有的应用当中,菲涅尔转换的数值计算是必要的,因此完全明白如何执行运算具有显著的理论和实践重要性。或许在理论计算过程中遇到的第一个问题会是如何选择一个合适的均匀分布的抽样值来代替输入平面的复杂标量波场。在文献中有许多通过检测需要多少抽样值来处理这个问题的手稿,因此在检测内核或者是菲涅尔啁啾函数时尼奎斯特采样率(或者是一个相关的标准)被采用了,参见例子【25-31】。然而这个处理可以等效于准确的理论计算,它往往可以是不必要的数值密集型【28】。用于计算输入输

5、出信号的范围大小被发现也影响光学采样率,然而在文献中也出现了一些关于理想采样率的意见分歧,例如【29-31】。通常也不是很清楚当违反采样规则时数值计算是为何变得不准确的。因为这些因素,很有必要来重新审视这个问题,即为衍射积分运算提供一个合适的采样率。尽管我们的分析是针对于菲涅尔转换,但是这一结果可以概括到在【29-31】中讨论的傍轴积分中。在此,我们以一种完全不同的方式来处理采样问题,即依靠一种对数值衍射过程的直观的物理描述。这一描述对分析普遍的衍射问题和准确的确定通过采样所引进的理想误差都是有帮助的。和文献中的其他手稿不同的是我们在决定合适的采样率时不考虑菲涅尔内核和啁啾函数在计算中的作用。

6、相反地,我们依靠输入域的空间和空间频率范围并依靠衍射平面中重现波的位置来定义采样率。这些重现波的出现是由于采样操作(平面1中的复杂信号的离散化,看图1和第3部分)。这些重现波和他们特性之间的离散化取决于菲涅尔转换是如何运算的。鉴于我们正在计算的信号的输出范围小于相邻重现波之间的离散这一事实,我们认为我们的信号是被合适采样的。这篇论文的论据基于以下考虑:(1) 在空间和空间频率域有一个有效的有限的支持的信号被定义为使用来自在【27,28,32-35】中描述的空间-带宽产品的概念。这种信号包含定义的(或使用者选择的)最大的空间频率,和一个有限的输入范围。衍射的真正的物理过程使得这个信号在衍射平面中

7、有一个无限的输出空间范围,我们后边会定义为SE。(2) 从一个有限的采样值而不是从1中考虑的连续情形来计算衍射分布从根本上改变了这一问题的性质。这一理论计算的信号将重新产生一个来自于能够产生范围为SE的输出平面的点1的分析结果。然而除此之外,重现波的一个无限集产生于衍射平面。这些重现波的特性取决于这一运算是如何运行的。(3) 对于数值计算衍射积分考虑了两种方法。直接计算衍射积分会产生彼此间隔为的复制平面,在此是波长,z是传输距离,是在输入空间域的采样间隔。通过运算在输入域中信号的空间频率没有发生相位移动,并且不是通过尼奎斯特标准采样获得的空间频率也将会传播并会加强在衍射域中的场。基于光谱的运算

8、在衍射平面中产生了一个彼此间隔的重现波的无限集,在此是空间频率域的采样间隔。在光谱运算过程中衍射信号的空间频率成分经常被限制在空间频率域。图1,衍射过程的图示。一个无线平面波入射进平面1中的孔径中,该平面以空间变量X表示。考虑到如何计算P(x,z)中的复振幅,仅仅是开放孔径的光对P(x,z)中的复振幅有贡献,我们把开放孔径内的光设想成由无穷多个点光源发光组成的,每一个点光源都带有强度值和相位值(图中只画了一部分点光源)。因为这个孔径是被理想平面波照明的,每一个第二级点光源都带有相同的强度值和相位值,尽管当考虑到距离l1和l4时,由于光的路径不同每一点光源将积累不同的相位值。(4)我们建议的抽样

9、规则遵从以上1-3点:SE比和都小。当这一点确定后,这个衍射信号被认为是被很好抽样的。我们再一次标注,以上所采取的方法不同于文献中所提出来的方法,这是因为我们在思考时没有用到菲涅尔啁啾函数的特性。在2-5节中,我们得出了以上的点1-4。在第六节中,我们把注意力转移到计算菲涅尔转换的高效计算算法,对于这一点我们用到了快速傅里叶变换。两种算法被明确的命名为:直接算法和光谱算法,其中光谱算法是我们在第4和5节中讨论过的直接和光谱计算的快速实现(基于快速傅里叶变换)。我们的理论结果与文献中的其他分析方法所得的结论做了对比。最后,在第七节中,我们考虑一个重要的案例在这个案例中我们在第4和5节中提出的抽样

10、规则是不合适的:也就是说,在衍射区被抽样时我们希望对这个结果做菲涅尔逆变换,这后一种情况对数字全息照相术有重要的寓意,然后我们总结这篇论文的主要发现。2、 一个分析解决方案 在随后的介绍中为了表述简单,我们执行一维分析。在图1中,我们简绘了问题的特性。平面1中的场我们以大写字母U(x)表示,并假设它是已知的,我们的任务是推导出衍射场的表达式,即平面2的表示式。通过【4】中的分析,我们现在写出菲涅尔转换的定义式: = (1)在这里是单色相干光(在时间和空间上的)的波长,z是平面1和平面2的轴距离(参见图1),j=,变量X和x分别代表在平面1和平面2上的空间坐标。为了余下的分析我们将降低开始的相位

11、项,即。 在有些衍射问题中有可能能解出等式1的解析解。由于一些原因这些解决办法非常重要:他们洞察了这个衍射过程,他们也可以作为一种评估数值方法准确度的方法。这个可以通过将数值计算结果和通过对的分析方法而获得的结果作比较而获得。一些与菲涅尔转换有关的特性在【27,36-41】中讨论过了。我们用下面这个等式第一次检验等式1的分析方法: U(x)=expcos(2X), (2)它也可以表述为下式: (3)在上式中,和U(x)的空间扩展有关。然而严格的说,U(x)扩展到一个无穷的区域,信号的超过99.9%的能量存在于以下的范围中:-2【33】。U(x)也有空间频率成分。将等式3带入等式1就得到了如下结

12、果: (4)并且 (5) (6) (7) (8) (9)我们注意输入的调制高斯函数已经被转换成带有4的空间扩展的高斯函数。高斯函数的中心位置在x= 存在于x=-。因此在菲涅尔转换之后我们会看到U(x)在平面2将有一个大小为SE的空间扩展。 SE=2(+2). (10)这代表了我们的第一个重要结论。它表示一个带有有效有限支持并知道它的空间频率成分的信号由于他的两个独立分量:和,所以它将随着它的传播程度而增强。由于结果相对简单我们选择了这个分析形势,它使得人可以看到和特定空间频率有关的能量是如何随着传播而远离光学轴的,然而仍然有部分处于高斯外壳以内,参见【42】和【43】的18.6节。空间频率越高

13、它随着传播偏离空间轴越远。尽管如此,对于相对简单的衍射问题这也是一个解决办法,它的结论可以被扩展到其他更多的复杂案例中。 几乎所有的我们希望去数值估计的衍射问题都在输入平面内有一个有限的扩展,和等式2很相似。总的来说这些信号在输入平面内都有一些和他们相似的空间结构。当我们试图去推广等式10的结果到更多的普通信号时出现了一个问题。这是因为等式10的结果来自于等式2,等式2有一个明确的空间频率成分。对于一般信号,我们如何去选择一个合适的空间频率值呢?这个问题更详细的在第五节被检验了,在那儿我们展示了通过研究信号在它的傅里叶区的能量是如何分布的去为选择一个合适的值,也可以参看【27,34,42,44

14、】。我们假设如果信号的傅里叶转换能量具有多余一个具体数值存在于某个空间频率下,这上一个空间频率值就变为。通过计算输入波在整个输入面的卷积可以计算出这个信号在空间区的总能量。3、 数值计算的输入在接下来的一节中,我们介绍可以用来计算菲涅尔转换的两种不同的方法。我们以直接计算和光谱计算来提出它们。这些方法不同于接下来将要在第6节中介绍的快速数值计算,因为它们没有利用快速傅里叶转换算法并且输出空间的坐标轴x可以被任意选取。这一节的目的是清楚的描述我们数值计算方法的输入,这个输入将采用两个坐标矢量的形式:一个空间矢量和一个代表我们输入信号的复杂值。这些值一旦被选取,我们就可以比较每个计算方法的相关表现

15、。为了开始我们的数值分析,我们假设我们有一个复杂值矢量U,它对应于函数U(x)在均匀空间采样点上的值(采样点以间隔分开)。并用空间矢量定义。,= (11)在此 (12)并且在此N是采样总数。在这篇论文的其他地方,我们用黑体字符来表示一个矢量。这两个矢量还有已经给出的和z我们定义为是数值计算的输入参数。4、 直接计算 因为我们现在仅使用抽样中的一个有限值来表示平面1中的输入场,因此等式1的衍射积分推导得出一个有限和式= (13)在这里n是一个整数。注意到是一个关于x的连续函数,并且它是通过一个有限的数据点集计算出来的,我们用上标S来表示它。因此等式13可以等同于以下描述:乘以一个啁啾函数,经过一

16、个傅里叶的尺度变换,再乘以另一个啁啾函数。我们现在用一个具体例子来检查一下 (14)在这里 (15)我们现在来抽样U(x),取N=100,变化区间是-L在此L=0.1mm,已知X为0.2m。其它数据取做z=1cm,=505.7nm,=30。在图2和3中,我们分别表示出了在区间 mm和区间 mm上的计算结果。在图2中我们表示震级分布,在图3中表示相位分布。图2.衍射计算的结果。重现波的出现在x=2.5mm处是清晰可见的。红色虚线表示的位置,解释衍射区域的范围。以黑线画出的分布已被空间滤波,不含有高于35的空间频率。注意信号的有限范围和蓝线作比较。(报告,以蓝色绘制的中央级重现波所画的范围不会超过

17、区间)图3.衍射运算的相位分布结果。两条线都超出了范围。左图是零级重现波的相位。右图是一级重现波的,在右图中有一个大小为的恒定偏移量和一个斜率为的线性偏移量。对于这一数值例子计算SE是有指导意义的。对于这个计算,我们最初选择=,随后我们将会看到,等式14在空间频率域包含的能量高于,这是由于矩形函数它限制了信号有限的空间扩展。为了计算出的值,我们需要将和等式15确定的矩形函数的有限扩展联系起来,例如我们设定4=2L。结果画在了图2中。在图2中我们看到在 mm处有一个波形的再现。比较一阶重现和中心处的相位,我们可以发现一阶相位分布有一个额外的线性相位和一个恒定相位。我们注意到由于运算在平面2中的波

18、形重现中有一个无穷量,它可以通过在一个很广的区间x上绘制的图形而验证。接下来的关系能够保持并能通过附录A中的方法概论推导出来: (16)从这些分析中我们可以发现下面的采样规则证明了它本身,例如: SE< (17)为了保证相邻的重现波不发生相互重叠,我们在数值计算衍射分布时引入了误差。当DC被用作计算菲涅尔积分时,所有的空间频率都通过媒介传播并且对平面2中的复杂分布有贡献,甚至是那些通过尼奎斯特采样率获得的空间频率也这样。从图2中发现空间频率成分在空间坐标大于的地方出现是很明显的,在这里一个振荡信号在时向外扩展。这个震荡是由于输入信号的空间频率高于。对于这一不理想的取值,导致了在处没能反映

19、出衍射信号准确的输出扩展。选择一个合适的值应该基于输入信号的能量在傅里叶区的分布。在下一节中,我们将验证更多的基于信号产生的空间-带宽概念来为选择一个合适的值。然而,让信号在傅里叶区通过一个空间滤波系统来限制的空间频率扩展并因此控制SE是很有可能的。在这里我们移动所有的频率到高于35处【连续的的采样率非常高,这些样本是使用了FFT操作的傅里叶转换,并且这个结果的空间频率分布被乘了一个矩形孔径;这一滤波空间频率分布后又经过了快速傅里叶逆变换。】。在图2中,经过这样一个滤波系统的结果可以通过检测黑点来获得。这一分布有一个非常清晰有限的空间扩展并且它与等式10以 计算出的SE非常一致。这一分布(以黑

20、线画出)有一个遵从于第2节中说过的结论的空间扩展,然而这一分布当与正确的分析方法做比较时并不是那么准确。滤波系统非常明显的移动了位于mm处的重现波的结构细节的一部分。尽管如此,如果图2所表示出的空间滤波结果(这一分布以黑线表示)被认为是满足于我们的要求的,那么我们要注意到可以通过减少抽样数量来得出一个几乎相同的结论。对于一个给定的输入,减少抽样数量就降低了重现波之间的间隔;空间频率滤波系统控制SE。在第5节中,我们发现对于的一个合理的取值是60 ,它在确保重现波之间有少许交叉时来保持高度准确度提供了一个合理的平衡点。我们建议当输入信号的空间和空间频率扩展已经知道时,等式17的关系式可以作为一个

21、抽样规则来使用。对于等式14所讨论的具体案例,我们发现对于z和的一系列不同取值,信号至少有98%的能量存在于上,当 时,参见等式18。尽管SE的标准在等式14中已经被具体验证了,我们发现对于一系列不同的信号类型它仍然满足,包括有限空间频率扩展的随机信号。与第一抽样规则有关的重要一点是当z变小时,重现波彼此之间距离减小。这一效应可以通过增加N(仍保持2L的输入扩展)来补偿,因此降低了。然而当过了某一确定点后,这一计算变得极其的数值密集,因此对于实际计算很难。在这一节的最后我们用下式来计算输入信号的总能量,: (18)对于在这里出现的数值案例平面1的任意单元都达到了=0.0001。5、 光谱运算

22、为了执行菲涅尔转换这个方法使用了傅里叶转换。对于一些复杂信号在这里定义正向和逆向傅里叶变换是很合适的: (19) (20)在这里空间频率坐标,函数和是傅里叶转换对儿。从【4】中等式1也可以写成以下形式: (21)等式21和1是数学上的等价命题。在下面的小节中我们研究当使用有限的抽样数值来对等式21进行数值计算时出现的不同的步骤。为此介绍离散形式的傅里叶变换是有帮助的,在这里再一次声明大写的S表示这一连续函数来自于由复杂数据组成的有限集,在我们的案例中是来自于矢量U,在第三节中明确定义: (22)在这里是一个整数。我们注意到等式22描述的分布也包含了一个无穷数量的重现波,他们在傅里叶区是彼此分离

23、的,彼此间隔为。为了把它们和在第4节讨论的重现波区别开来我们这些重现波为傅里叶重现波。A. 傅里叶逆变换操作用等式22来替换等式21中的函数,我们得到下式: (23)在等式23中我们已经明确包含了傅里叶逆变换积分来强调积分是发生在整个傅里叶平面,因此这个积分就包含了来自这个平面的所有傅里叶重现波的贡献。这一沿着整个傅里叶平面的分布乘以一个有无限扩展和有效焦距为的透镜或啁啾函数,更多细节参见【40】。 然而实际上,在等式23中的傅里叶逆变换的积分被限制在一个傅里叶区的有限范围内和有限的抽样数值上。通常当计算基于SM运算的快速傅里叶变换时在计算积分时所采用的有限扩展是,它包含了N个采样值。正是这种

24、限制的程度和傅立叶二次采样过程发生在这里,使基于快速傅里叶变换的DM和SM计算对于输出幅度具有根本不同的性质。我们建议读者参见下面的介绍,在这里对傅里叶重现波对于菲涅尔转换的输出的影响做了详细的研究【45】。B. 选择傅里叶范围:功率因素因为实际是一个连续函数,我们可以随意选择一个抽样间距和傅里叶域范围。根据Parseval定理,傅里叶转换节省功率并且我们应该希望在整个傅里叶域的总功率等于。采样操作的特征是功率包含在每个重现波窗口,例如在变化区间上。我们现在观察到这个说法是另一个说法,这个误差是通过采样操作引进的。信号在一个域中有一个有限范围,参见【36】。因为U(X)是有边界的,因此它的傅里

25、叶转换对必须分布到整个傅里叶域。这意味着当一个有限程度的信号被采样时,相邻重现波(在傅里叶域)的功率相互渗透是不可避免的。以这样的方式传播每一个重现波的总功率是。这个功率泄露实际上是混叠效应,并且它可以通过增加(对于一个恒定的输入范围可以增加抽样数量N)来任意缩小。以这种形式定义空间范围和空间频率范围就产生了一个空间-带宽生产理念。这个概念已经被其他作者经过了一些细节的讨论,参见【27,28,34,35,44】,在傅里叶域的一个区可以这样定义,在此: (24)并且在这儿R是某个比值,或许是0.9。当等式24中的FR增长和R接近1时,和的分布在区间上变得越来越相似,这就表示由交叉引起的误差的降低

26、。从这些考察中,我们可以定义在傅里叶域的一个区它包含信号的功率。我们可以通过回归到第4节讨论的数值案例来更详细的研究这个问题。从这些模拟值中我们发现在傅里叶域中的相邻重现波之间的距离是 。当我们用等式24来研究信号的功率在傅里叶域是如何分布时,我们发现信号的功率存在于区间内。这就表示我们仅利用位于区间内的信号就可以获得合理的计算准确度。执行这个运算并将他的结果与在图2和3中描绘的DC的结果作比较是具有指导意义的。降低影响的空间频率分布可以用来降低计算量,正如我们将在6.3节中看到的,可以通过去除高空间频率来降低混叠效应和相邻重现波的交叉并因此降低SE。C. 光谱计算:抽样规则在前几小节中,我们

27、考虑了在傅里叶域如何基于功率因素来定义范围。我们现在定义一个在傅里叶平面描述我们信号的复杂值的矢量。保持N=100,我们可以定义一个空间频率步长和空间频率矢量 (25)并且我们用这个矢量来抽样连续场(26)将这些矢量带入等式23中,并用有限求和来替换这些积分我们可以得到以下结果: (27)在这里我们再一次声明是一个连续函数,它是经过一个有限的数字点集计算出来的。这个函数是我们光谱运算的数值计算的结果,并且我们用上标来标记。和相似,一个无穷多个重现波的点集也在平面2上产生。然而,这里有两个不同点:(1)在等式27中重现波的间隔是,(2)高阶重现波没有任何和他们有关的线性或常数相位,参见等式16。

28、比较等式13和27括号里的形式,我们可以观察到他们是一些相似的数学操作:(1)都采用采样的有限矢量,(2)都乘以一个啁啾函数,(3)对结果都做了菲涅尔转换操作。这一特别研究使得我们可以对SC方法总结一个和采用直接计算方法所总结的一个相似的采样规则,这一规则可总结为以下公式: (28)在这里SE通过公式10已经给出。这一结论表明在由SC和DC方法计算所产生的重复波之间有根本的不同。最重要的是他们的间距不同,DC和SC的间距分别为和。6、 快速傅里叶变换算法在这一节中,我们描述在先前几节中讨论过的DC和SC方法在利用基于快速傅里叶算法时是如何运行的。执行DC和SC运算意味着我们可以保持控制真个的输

29、出空间变量并能够对给出的任意值计算连续函数的值。对于灵活性的不利方面是运算所需的时间长度,因此我们希望以某种方式来使用FFT算法。我们提前声明我们的重点是勾勒出一个对这个问题的特殊的解决办法。我们希望为达到相同的目标而执行更加数字高效的计算方法是可能的。A. 零补充:在输出窗口增加抽样数量快速傅里叶变换采用带有N个复杂值的矢量,返回一个N值矢量。在这篇论文的第3节,我们讨论了对于手边的数值计算问题给定输入,定义空间矢量X和与之联系的复杂值U的集。每个抽样彼此之间的物理距离已经给出是,因此空间频率范围,即理想的重现波在空间频率域的间隔,已经给出是。我们再次声明在空间频率域,每次抽样之间的空间间隔

30、是。现在我们对矢量U进行零补充,因此有了一个新的矢量: (29)在这里下标ZP代表零补充。矢量现在有M个抽样值,在这里。零补充操作不改变的值,因此空间频率范围仍是一个常量。我们再次声明快速傅里叶算法从M抽样值映射到M抽样值,带有的影响是我们在空间频率域相同的范围上增加了采样数量。在空间频率域现在的采样值之间的距离变为,并且。B. 插零:增大输出窗口的范围在这里我们规定一个不同的计算,在这个计算中我们可以通过在我们的输入复杂坐标中插零来增大快速傅里叶算法的输出范围。这个方法已经在【9,46】中被讨论过了,对于该方法的更多细节我们建议读者参阅附录B中的【9】。我只想说定义一个以下矢量是可能的: (

31、30)在这里下标“iz”代表插零,复杂值是矢量U的个别元素。随着我们在U中插零,我们增大了快速傅里叶变换的输出范围,然而在任何形式上都没有改变傅里叶分布。然而正如我们将要在下面的数值例子中看到的,在更大的空间频率范围上研究分布和研究输出重现波的特性是有可能的。C. 另外一个数值例子在这一节中,我们计算二级数值计算的结果。我们重复被Voelz和Roggemann在文献【30】中的2.D节提出的计算过程,并建议读者参阅他们出版物中的图3(a)-3(h)。这些作者验证了当一平面波入射到一一维狭缝时所发生的衍射模式形成过程。在论文【30】的这一节中,两种不同的方法做了比较,作者们对这两种方法的术语是冲

32、动响应法(IR)和传递函数(TF)法。TF方法和这里讨论的SM方法是一样的。然而他们的IR方法概念上不同于我们的DM方法,因为IR的输出和SM有一个相同的输出范围。我们现在考虑【30】中的图3.(h),在这个图中SM被显示用来产生不正确的结果以重现图4.(a)的细节。在这个分布中有及其高频的尖峰出现。图4.(a)的细节比【30】中的图2.(h)有更大的输出窗口。为了在我们的计算中增大输出窗口的大小,我们已经在傅里叶平面分布中进行了插零,我们现在可以看到相邻的重现波。模拟值表示出,因此对于SM方法的一维重现波应该位于这个空间位置。正如可以从图4(a)中观察到的这确实是这个案例。现在使用在6.1节

33、讨论过的零补充法,对傅里叶分布进行零补充(在保持零插入的出现)。现在在相邻抽样之间有精细步长的条件下,我们可以认识到事实上更高的频率成分在信号中也是会出现的,正如可以通过比较图4(a)和图4(b)可以发现的一样。我们希望去按着这篇论文的第4和第5节中介绍的抽样规则去解释这一数值结果。在这篇论文中我们第一次声明DM为SM运算产生正确的结果并展示于图4(a)和图4(b)。如果我们在等式10中设定为,也就是尼奎斯特采样频率,我们从等式10中发现SE=5.2,因此信号的物理范围主要存在于输出采样窗口。这和SM方法的运算结果相反,在这里,因此相邻的重现波将会重叠引起错误的人造误差正如我们可以在图4(a)

34、和图4(b)中观察到的一样。我们现在希望研究我们是如何控制SM计算的因此正确的衍射分布可以计算出来。我们可以先考虑如何降低值并因此增加SM重现波的间隔。这可以通过零补充输入复杂矢量U以得到(我们已向读者指出零补充操作发生在空间域)。在图4(c)中,我们已将值减半并使得相邻重现波变化使它们在窗口中不可见。在重现波中仍有部分重叠,因此在分布中仍有残余变形。通过进一步降低的大小,重现波之间的距离可以拉大,这些变形可以变得任意小。或者,我们可以通过消除高空间频率部分来改变每一个重现波的物理分布。这就是我们在图4(d)中展示的,在图中我们使得傅里叶分布被一个矩形孔滤波因此取得最大值。我们把值返回到图4(

35、a)和图4(b)的选择值中,重现波再次出现并位于。然而,我们声明通过移动高空间频率,相邻重现波之间的交叉或者混叠已经明显降低正如我们从等式10中所希望得到的。7、 结论在这篇论文中,我们已经讨论了如何通过使用有限的抽样值来计算菲涅尔变换的。这个话题已经被几个其他作者【25-31】验证了,在这篇论文中抽样规则衍生于二次相位因子和啁啾函数在衍射积分的菲涅尔内核的作用。在这里,对于这个问题我们采用了一个不同的方法。我们所做的第一个观察就是在输入平面的有限范围的解析信号,它还包含具体的空间频率,这一空间频率随着信号的传播还会在一定程度上增长。在第2节中我们研究了具体的函数即等式2,当把等式插入到菲涅尔衍射积分时可以积分获得一个已知的解析解。根据这个解析解我们推导出了衍射信号的空间范围,它的有限的空间范围,与在输入平面的空间频率成分之间的关系。然后我们尝试将这些特性扩展到其他信号中。在第3节中我们规定了数值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论