大中型客车空气悬架设计规范_第1页
大中型客车空气悬架设计规范_第2页
大中型客车空气悬架设计规范_第3页
大中型客车空气悬架设计规范_第4页
大中型客车空气悬架设计规范_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、大中型客车空气悬架设计规范II大中型客车空气悬架设计规范1 范围本规范规定了空气悬架设计过程中涉及到的符号、代号、术语及其定义,设计准则,布置要求,结构设计要求,材料选用要求,性能设计要求,设计计算方法,设计评审要求,装车质量特性,设计输出图样和文件的明细,制图要求等。本规范适用于空气悬架系统产品设计过程控制,同时检验、制造可参考使用。2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用

2、于本规范。GB/T 13061 汽车悬架用空气弹簧橡胶气囊GB/T 11612 客车空气悬架用高度控制阀QC/T 491 汽车筒式减振器尺寸系列及技术条件QCn 29035 汽车钢板弹簧技术条件QC/T 517 汽车钢板弹簧用U形螺栓及螺母技术条件GB/T 4783 汽车悬挂系统的固有频率和阻尼比测定方法3 符号、代号、术语及其定义GB 3730.12001 汽车和挂车类型的术语和定义GB/T 3730.2 道路车辆质量词汇和代码GB/T 3730.3 汽车和挂车的术语及其定义 车辆尺寸GB/T 13061 汽车悬架用空气弹簧 橡胶气囊QC/T 491-1999 汽车筒式减振器 尺寸系列及技术

3、条件GB/T 12549- 1990 汽车操纵稳定性术语及其定义GB 72582004 机动车运行安全技术条件GB 13094-2007 客车结构安全要求QC/T 480-1999 汽车操纵稳定性指标限值与评价方法QC/T 474-1999 客车平顺性评价指标及限值GB/T 12428-2005 客车装载质量计算方法GB 15892004 道路车辆外廓尺寸、轴荷及质量限值GB/T 918.189 道路车辆分类与代码 机动车凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。4 设计准则4.1 应满足的安全、环保和

4、其它法规要求及国际惯例4.1.1 安全技术条件应符合GB 72582004中有关要求。4.1.2 操纵稳定性符合QC/T 480-1999中有关要求。1-144.1.3 客车平顺性指标应符合QC/T 4741999中有关要求。4.2 应满足的功能要求及应达到的性能要求说明:本条规定应满足总的功能要求4.2.1 总的功能要求:缓和、抑制由不平路面引起的振动和冲击,保证乘员乘坐舒适和所运货物完好。除传递汽车的垂直力以外,还传递其它方向的力和力矩,并保证车轮和车身(或车架)之间有确定的运动关系,使汽车具有良好的驾驶性能。4.2.2 总的性能要求:4.2.2.1 可靠性:悬架系统中各零部件应具备足够的

5、强度和刚度,保证工作可靠,正常使用寿命不低于高一级客车的标准。4.2.2.2 乘坐舒适性:满足整车总布置对悬架系统的基本要求;空气悬架系统自然振动固有频率偏频 ,现阶段选择 1.21.4 Hz(7285 cpm),路面平度进一步改善之后,高档次客车选择 1.01.16 Hz (6070 cpm),参见8.1。空气悬架系统相对阻尼系数(或称阻尼比,非周期系数),选择满载状态的相对阻尼系数 0.250.35(山区使用可加大到 0.5)作为平均值,再根据标准或样本选择减振器规格尺寸和额定复原阻力及额定压缩阻力,参见8.2。4.2.2.3 整车操纵稳定性:在正常工作行程范围内,悬架系统内各零部件之间无

6、运动干涉。导向机构布置合理,能有效克服外界环境对汽车的干扰,保证汽车稳定行驶。空气悬架应保证有足够的抗侧倾能力,推荐在 0.4g 侧向加速度作用下,客车的稳态侧倾角取 46°,高速客车取下限,低速客车取上限。空气悬架应保证有足够的抗纵倾能力,抗纵倾能力主要是抗制动点头,可以用一定制动减速度或惯性力作用下的纵倾角来衡量,推荐相当于在制动减速度为 0.5g 作用下,纵倾角£1.5°。4.3 设计输入、输出要求根据总布置方案,结合设计任务书的要求,确定悬架系统的结构形式、布置方案和主要性能指标。了解整车总质量,轴荷分配,质心高度,车架结构形式及主要尺寸,前后桥质量及功能

7、图,车轮质量等参数。设计完成输出:悬架系统装配图和零件图,总成物料明细,签订新增关键外购件技术协议。对关键件如空气弹簧、高度阀、减震器、推力杆和C型梁指定供应商。4.4 设计过程的节点控制要求前期准备,方案布置,设计计算,绘制总成图,分解零部件图,汇总零部件明细,运动校核。 5 布置要求根据总布置方案、车架结构尺寸、车桥结构尺寸确定空气悬架的布置方案。如果空间允许,空气弹簧的左右中心距尽量放大,提高横向稳定性。前悬架保证主销后倾角、后悬架保证主减速器倾角与总布置要求一致。要确保在整个空气弹簧行程中无锐边接触弹性元件。空气弹簧周围空间的直径必须保证比空气弹簧本身的最大外部直径多25mm,以允许由

8、于错位而产生的直径正常变大或变形。6 结构设计要求6.1 模块化设计要求根据空气悬架的结构形式:导向臂式空气悬架、四气囊推力杆式空气悬架、六气囊推力杆式空气悬架;结合客车大小可以划分出一系列前后悬架模块。6.2 标准化结构、零部件大中型客车空气悬架选型:建议选用专业生产厂家已批量生产的部件,如无特殊要求,避免新设计以上部件,以利于减少新产品的投产时间,降低生产成本和维修成本。7 关键件选用规范要求2-147.1. 空气弹簧:7.1.1 空气弹簧安装高度偏差5mm,空气弹簧中心线倾斜角度不大于7º;密封性要求:气囊总成在充好气后,经过24h内压下降不超过0.02Mpa。7.1.2 在气

9、簧内压 59.5 bar(气源为 8 bar,气簧内压 55.5 bar;气源为 10 bar,气簧内压 77.5 bar;气源为 12 bar,气簧内压 99.5 bar)时,气簧载荷能力必须大于等于设计满载状态下的簧载质量。对公交车等超载情况较多的车型,气簧内压要取下限;对旅游、客运等超载情况不多的车型, 气簧内压可取上限。7.1.3气簧许用行程:必须大于设计要求的最大行程(注意:要计算杠杆比和倾角的影响)。气簧在设计位置尽量避免活塞相对上盖偏心,跳动过程中避免产生内部干涉。7.1.4 气簧布置空间:比气簧的最大半径大 25 mm 以上,以防止异物刮伤。在满足布置空间要求的前提下,尽可能增

10、大横向中心距左右气簧跨距。7.1.5气簧刚度及固有频率:可以根据理论计算公式,更多的是利用供应商提供的气簧弹性特性曲线或表格,查到在设计高度和设计气压条件下的气簧刚度和/或频率,并按照具体设计的杠杆比关系,求到空气悬架系统的刚度和偏频,设计计算参见8.1 。7.2 减振器:空气悬架必须采用带有反向(下跳)限位吸能的减振器。7.2.1 减振器最大压缩(上跳)行程,对于空气悬架,其上跳行程取决于空气弹簧的压缩行程,一般由气簧内的限位块来限止。减振器的 最大压缩行程也是由它决定。应该注意的是,减振器的行程要计入杠杆比和安装角的影响。对于非独立 悬架,如果左、右减振器的跨距和限位块的跨距不同,侧倾时行

11、程会被放大或缩小,要计入这个差异。 减振器的极限压缩行程要比上述的计算最大行程多 510mm,避免减振器活塞杆被顶弯。7.2.2 减振器最大拉伸(下跳)行程,几乎所有空气悬架都借助减振器来达到下跳行程的限位,所以减振器的极限拉伸行程就是悬架的最 大下跳行程。这里也要计入杠杆比、安装角以及跨距不同产生的放大或缩小的影响。减振器的极限拉伸 行程必须要小于折算后的空气弹簧允许的最大拉伸量,以保证气簧的安全性、不脱囊。7.2.3 减振器的总行程和长度a) 减振器的总行程=极限压缩行程+极限拉伸行程 ;b) 减振器的最小长度=总行程+减振器基长(基础设计长度);c) 减振器的最大长度=最小长度+总行程;

12、d) 从相关标准 QC/T 491-1999 或供应商样本,就可选到标准化的减振器行程。根据标准或样本中具体设计的基长,就可以确定减振器的最小、最大长度。7.2.4 减振器的铰接头和安装角度 :减振器两端都是用橡胶件铰接固定,空气悬架推荐使用螺杆衬垫式。由于减振器伸缩时伴有摆动,这些铰接头产生转角。为了保证橡胶件承受的应力不致于过 大或发生滑转,避免早期损坏,对橡胶铰接头的最大转角以及减振器的安装角度必须给于限制, 扭转角±6°,偏转角±6°。7.2.5减振器的安装角度为了使铰接头的转角达到7.2.4要求,同时也为了减小由此引起的减振器活塞侧向力,对减振

13、器的安装角要求:a)减振器中心线与地面铅垂线的夹角,推荐设计一般£15°。b)某些车型的随动转向桥所用的减振器,若减振器中心线与地面铅垂线夹角³45°,则需选用特殊规格减振器,该减振器储油筒有特殊标记,布置时标记部位必须向上。c) 减振器布置应尽可能使下铰接点运动方向与减振器中心线一致,即减振器中心线垂直于下铰接头与瞬时中心的连线。这时效率最高,摆角最小。设计计算参见8.2。7.3 推力杆:空气悬架导向杆系在车轮上、下跳动或承受力矩时,会使系统的相关点按一定轨迹运动,该轨迹应与092为例。注:c、e在第一步已给出) 排除所有hchc-min或hehe-m

14、ax的弹簧,从而得到所要求的弹簧(如表中DH=13.3时满足要求)。 需要说明的是,如果实际应用中有最大高度的限制,则应该将此限制高度作为he-max。譬如,若最大高度限制为20,则表6中的he-max原为21.1应改为20。 列出所有剩下的弹簧型号及hc、hc-min、he和he-max值。 8.1.1.6第六步如果给定悬架的固有频率范围fn,则空气弹簧的固有频率范围fs可以由下式计算得到:fs=fnLr*由动态特性表5,列出空气弹簧在设计载荷Ld时的固有频率fs。如果表中没有列出设计载荷Ld下的结果,但设计载荷落在表中列出的某两个载荷之间,则应该对固有频率进行线性插值,比如,假设Ld683

15、3,*则fs可以由下面的线性插值表达式求出:7000-68331.23-fs*=7000-60001.23-1.25*计算得到fs1.233Hz。*判断fs是否落在空气弹簧的固有频率fs的范围内,若不满足,则将该种空气弹簧排除。选择剩下的空气弹簧。 8.1.1.7第七步这一步要确定空气弹簧在设计载荷Ld下的最大线压力P。首先查看一下常压下“载荷变形”曲线,如图三。6-14图三 常压下“载荷变形”曲线在图三中,过设计载荷Ld6833划一条水平线,过设计高度DH13.3划一条垂直线,两条线的交点处的压力即为要确定的最大线压力P。由于此点落在80-100PSIG之间,因此,可以通过线性插值来得到此点

16、处的压力。如,在DH=13.3处,P1=80PSIG下的载荷约为L17400,P2=100PSIG下的载荷约为L25900,所以,Ld6833下的压力P为7400-6833100-P =7400-5900100-80求得P92(PSIG)。判断最大线压力P是否在给定的允许线压力以内,若不满足,则应该排除。8.1.1.8第八步参看某设计高度时的动态数据曲线图。如图四为1R12-092型弹簧在设计高度DH=13.3时的“动态数据曲线图”。其横坐标表示弹簧高度;左下纵坐标表示载荷(相应曲线称为“载荷变形”曲线);右上纵坐标表示压力(相应曲线表示“压力变形”曲线)。此曲线图表明该空气弹簧在设计高度DH

17、13.3时的载荷分别为:L1=2000;L2=3000;L3=5000;L4=6000;L5=7000;压力分别为:P1=29;P2=43;P3=69;P4=83;P5=95。此数据来源于表5“动态特性表”。注意到:尽管“动态特性表”中给出了三种设计高度下的载荷、压力、弹簧刚度比率及固有频率等参数数据,但只有中间设计高度下的数据在“动态数据曲线图”画出。由于此时的设计高度DH13.3,因此实际弹簧压缩量hcDHc13.35.258.05;弹簧的伸长量heDHe13.36.1519.45;由第七步可知,在设计高度DH13.3,载荷Ld6833下的压力P92(PSIG)。然后过“动态数据曲线图”中

18、DH13.3,压力P92点处,划一条“平行”曲线,此曲线的两个端点高度分别为hc=8.05;he=19.45。曲线划好后,可初步估计对应这两个端点处的压力分别为219(PSIG)和47(PSIG)。7-14图四 1R12-092型弹簧在设计高度DH=13.3时的动态数据曲线图因此,在设计高度DH13.3,载荷Ld6833时,其压力范围近似为47219(PSIG)。从技术角度看,对于GOOD&YEAR公司资料中提供的空气弹簧,只要其压力范围在10220(PSIG),都认为是合格的。当然,不同的弹簧,其压力范围的要求也不一样。这些压力范围需要空气弹簧厂家提供。 排除不符合压力范围要求的弹簧

19、。第九步根据第一步数据记录表中的“环境条件”栏,选择符合环境条件要求的空气弹簧。8.1.2 空气悬架设计计算(1)、空气弹簧的选择计算:各参数变量的含义8-14图一 空气弹簧悬架结构图尺寸参数DW 铰点至轮轴的水平距离;DS 铰点至空气弹簧中心线的水平距离;Lr 杠杆臂比率(Lr=DS/DW);AXc 轮轴最大压缩量;AXe 轮轴最大伸长量;c 空气弹簧压缩量(c= AXc·Lr);e 空气弹簧伸长量(e= AXe·Lr);S 空气弹簧冲程量(S=c+e);DH 给定的空气弹簧设计高度;hc 空气弹簧最小压缩量(hcDH-c);he 空气弹簧最大伸长量(heDH+e);d

20、空气弹簧允许空间直径;ODmax 空气弹簧在100PSIG时的最大允许直径(一般ODmaxd2) Ae 有效面积(FP×Ae);N 悬架系统空气弹簧的个数;负荷参数W 簧载总质量;F 弹簧支撑力;(此力与所受载荷是一对作用力和反作用力)L每个空气弹簧的设计载荷;LWd d=P 空气弹簧线压力; N´Lr性能参数ff 激振力频率;fn 悬架系统固有频率;f 空气弹簧固有频率(ffs s=n);K Lr10mm时的刚度。正常工作范围选择图(由空气弹簧厂家提供)粗选9-14图二 正常工作范围选择图此图的使用方法:在空气弹簧的设计载荷Ld处划一条水平线(如图红线),如果所划的线通过

21、某个区域,则相应的弹簧系列即为所要选择的弹簧。如图,大波纹管式和滚动叶片式弹簧即为要选择的弹簧。如果弹簧冲程S和(或)弹簧设计高度已知,则选择范围还可进一步缩小。方法是:过所要求的总成件高度处划一垂直线(如图蓝线),可知,只有滚动叶片式弹簧满足要求。空气弹簧主要性能参数的精确选择方法见本规范8.1.1的内容。8.2 减震器的设计计算1. 相对阻尼系数的选择对于空气悬架,取=0.250.352. 减振器阻力系数的计算 g=2YCM式中:C 钢板弹簧垂直刚度M簧载质量3. 减振器阻力F的计算F=g×vn式中:v=0.52m/s减振器活塞运动速度通常在v=01.0m/s的范围内取n=1为了

22、减小路面不平传递给车身的冲击,减振器拉伸行程和压缩行程的阻力Fe和Fc取值有所不同,一般按下式计算:Fe+Fc=FFe=0.70.8F8.3 稳定杆主要参数的计算:参见汽车工程手册设计篇第839页840页。10-148.4 悬架系统横向稳定性计算:计算方法不限,计算出整车的侧倾角(侧向加速度为0.4g)不大于6º就符合规范要求。9 设计评审要求9.1评审的时机和方法方案评审:方案图完成后,组织相关设计专家和工艺专家进行图面评审。图纸评审:总成图和零件图设计完成后,组织相关设计专家和工艺专家进行图面评审。实物评审:样件试制完成装配后,组织相关部门的代表进行实物评审。9.2 评审的项目和依据说明:本条规定评审什么项目,评审的验收的依据是什么。悬架系统的行驶平顺性,评审的验收的依据是试交人员的主观评价和试验场的测试结果。 悬架系统的行驶稳定性,评审的验收的依据是试交人员的主观评价和试验场的测试结果。 悬架系统中各零部件的强度,评审的验收的依据是相关技术文件、试制记录、试验结果。悬架系统中各零部件的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论