第六章_样本及抽样分布_第1页
第六章_样本及抽样分布_第2页
第六章_样本及抽样分布_第3页
第六章_样本及抽样分布_第4页
第六章_样本及抽样分布_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第六章 样本及抽样分布【授课对象】理工类本科二年级【授课时数】8学时【授课方法】课堂讲授与提问相结合【基本要求】1、理解总体、个体和样本的概念;2、了解经验分布函数和直方图的作法,知道格林汶科定理;3、理解样本均值、样本方差和样本矩的概念并会计算;4、理解统计量的概念,掌握几种常用统计量的分布及其结论;5、理解分位数的概念,会计算几种重要分布的分位数。【本章重点】样本均值、样本方差和样本矩的计算;抽样分布分布,分布,分布;分位数的理解和计算。【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。【授课内容及学时分配】§6.0 前 言 5分钟前面五章我们研究了概率论的基本内容,从

2、中得知:概率论是研究随机现象的统计规律性的一门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。§6.1 随机样本 25分钟一、总体与样本1.总体、个体在数理统计学中,我们

3、把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究华北工学院男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。但在数理统计里,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标(可以是向量)和该数量指标X在总体的分布情况。在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。在实验中,抽取了若干个个体就观察到了的这样或那样的数值,因而这个数量指标是一个随机变量(或向量),而的分布就完全描写了总体中我们所关心的那个数量指标的

4、分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标可能取值的全体组成的集合等同起来。我们对总体的研究,就是对相应的随机变量的分布的研究,所谓总体的分布也就是数量指标的分布,因此,的分布函数和数字特征分别称为总体的分布函数和数字特征。定义1:把研究对象的某项或几项数量指标的值的全体称为总体;总体中的每个元素称为个体。根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。Ex1:考察一块试验田中小麦穗的重量: =所有小麦穗重量的全体(无限总体);个体每个麦穗重对应的分布: Ex2:考察一位射手的射击情况:=此射手反复地无限次射下去所有射击结果全体;每次射击结果都是一个个

5、体(对应于靶上的一点)个体数量化1在总体中的比例为命中率0在总体中的比例为非命中率总体由无数个0,1构成,其分布为两点分布 2.样本与样本空间。为了对总体的分布进行各种研究,就必需对总体进行抽样观察。抽样从总体中按照一定的规则抽出一部分个体的行动。一般地,我们都是从总体中抽取一部分个体进行观察,然后根据观察所得数据来推断总体的性质。按照一定规则从总体中抽取的一组个体称为总体的一个样本,显然,样本为一随机向量。 为了能更多更好的得到总体的信息,需要进行多次重复、独立的抽样观察(一般进行次),若对抽样要求代表性:每个个体被抽到的机会一样,保证了的分布相同,与总体一样。独立性:相互独立。那么,符合“

6、代表性”和“独立性”要求的样本称为简单随机样本。易知,对有限总体而言,有放回的随机样本为简单随机样本,无放回的抽样不能保证的独立性;但对无限总体而言,无放回随机抽样也得到简单随机样本,我们本书则主要研究简单随机样本。对每一次观察都得到一组数据(),由于抽样是随机的,所以观察值()也是随机的。为此,给出如下定义:定义2:设总体的分布函数为,若是具有同一分布函数的相互独立的随机变量,则称()为从总体(从分布函数)中得到的容量为的简单随机样本,简称样本。把它们的观察值()称为样本值。定义3:把样本()的所有可能取值构成的集合称为样本空间,显然一个样本值()是样本空间的一个点。二、样本的分布:设总体的

7、分布函数为,密度函数为,()是的一个样本,则其分布函数(联合分布)、概率密度函数(联合概率密度函数)分别为:=; =()Ex3:设总体为其一个简单随机样本,则 样本空间 样本联合分布§6.2 分布函数与概率密度函数的近似解 20分钟在概率论中,我们介绍了几种常用的分布函数与密度函数以及它们的性质,当时我们总假定它们都是先给定的,而在实际中,所遇到的用于描述随机现象的随机变量,事先并不知道其分布函数与概率密度函数,甚至连其分布类型也一无所知,那么,怎么样才能确定它的分布函数与密度函数呢?一般地,利用样本及样本值,建立一定的概率模型,用由此获得的概率统计信息来对总体的和进行估计和推断,这

8、就是:一、 经验分布函数。设()是来自总体的样本,()是样本的一个观察值,设这个数值由小到大的顺序排列后为:,对R 定义: 称是总体的经验分布函数。显然,是单调非降右连续的跳跃函数(阶梯函数),在点处有间断,在每个间断点的跃度为,(=1,2,3,)且,=0,=1,它满足分布函数的三个性质,所以必是一个分布函数。一般地,随着的增大,越来越接近的分布函数,关于这一点,格列汶科(Gilvenko)在1953年给了理论上的论证,即:定理1.(Gilvenko-Th):若总体的分布函数为,经验分布函数为,则对R,有:定理表明,以概率1致收敛于,即:可以用来近似,这也是利用样本来估计和判断总体的基本理论和

9、依据。Eg4:某厂从一批荧光灯中抽出10个,测其寿命的数据(单位千时)如下:95.5, 18.1, 13.1, 26.5, 31.7, 33.8, 8.7, 15.0, 48.8, 48.3解:将数据由小到大排列得:8.7,13.1,15.0,18.1,26.5,31.7,33.8,48.8,49.3,95.5则经验分布函数为: 二、利用直方图求密度函数的近似解:设()为来自总体的一个样本,其样本观察值为(),将该组数值分成组,可作分点:(各组距可以不相等),则各组为:(,(,,(,,若样本观察值中每个数值落在各组中的频数分别为,则频率分别为:,;以各组为底边,以相应组的频率除以组距为高,建立

10、个小矩形,即得总体的直方图。由上分析可知:直方图中每一矩形的面积等于相应组的频率设总体的密度函数为,则:总体(真实值)落在第组(,的概率为:。由Bernoulli大数定理可知:当n很大时,样本观察值(单个)落在该区间的频率趋近于此概率;即:( ,上矩形的面积接近于在此区间上曲边梯形的面积,当n无限增大时,分组组距越来越小,直方图就越接近总体的密度函数的图象。(这与定积分的意义具有同样的道理)。§6.3 样本的数字特征 40分钟0、引言由第三章节知:随机变量的数字特征,能够反映随机事件的某些重要的概率特征,从第一节可知,样本也是一组随机变量(随机向量),为了详细刻划样本观察值中所包含总

11、体的信息及样本值的分布情况,下面我们研究样本的数字特征。一、样本均值与样本方差(随机变量)设()是来自总体的一个样本,()是相应的样本观察值。定义1,称为样本均值。称为样本方差。称为样本标准差。样本均值与样本方差分别刻划了样本的位置特征及样本的离散性特征。二、样本矩设总体的分布函数为,密度为,若,则称为总体的阶原点矩;若,则称为总体的阶中心矩。把总体的各阶中心矩和原点矩统称为总体矩(数值)表示总体的数字特征。特别地:=;是总体的期望和方差。仿此,下面给出样本矩的定义:定义2:设()是来自总体的一个样本,()为其样本值,则样本的阶原点矩(随机变量)定义为:,=1,2,3;样本值的阶中心矩(随机变

12、量)定义为:,=1,2,3;由上述定义可知:样本均值、样本方差、样本均方差、样本矩都是关于样本的函数,而样本本身又是随机变量(随机向量),因此,上述关于样本的数字特征也是随机变量,其值分别为:;=; ;=1,2,3;这些值也分别称为样本均值、样本方差、样本标准差、样本阶原点矩、样本阶中心矩。特别地, ,但与却不同,由与的计算式可知:,当时,=,所以常把记为。并常利用来计算S(标准差)。Eg5:从某班级的期末考试成绩中,随机抽取10名同学的成绩分别为:100,85,70,65,90,95,63,50,77,86(1)试写出总体,样本,样本值,样本容量;(2)求样本均值,样本方差及二阶原点矩解:(

13、1)总体:该班级的期末考试成绩;样本:(,)样本值:(100,85,70,65,90,95,63,50,77,86)样本容量: =10(2)(100+85+86)=78.1【注】本例作为学生使用计算器计算样本矩的练习。 10分钟三、课后作业:1、仔细阅读P122-132; 2、作业:P146 3,43、预习:抽样分布§6.4 抽 样 分 布 100分钟0、引言有了总体和样本的概念,能否直接利用样本来对总体进行推断呢?一般来说是不能的,需要根据研究对象的不同,构造出样本的各种不同函数,然后利用这些函数对总体的性质进行统计推断,为此,我们首先介绍数理统计的另一重要概念统计量。一、统计量(

14、随机变量)定义1:设()是来自总体的一个样本,()是的函数,若为实值函数,且中不含任何未知参数,则称()是一个统计量。事实上§6.3中的样本均值、样本方差、样本矩都是统计量;再如是来自总体的一个样本,则都是统计量,而就不是统计量。由§6.1知:()是随机变量,而统计量是样本()的函数,所以统计量也是随机变量(随机变量的函数为随机变量)。我们把统计量的分布称为抽样分布。而统计量是我们对总体的分布函数或数字特征进行统计推断的最重要的基本概念,所以寻求统计量的分布成为数理统计的基本问题之一。然而要求出一个统计量的精确分布是十分困难的。而在实际问题中,大多总体都服从正态分布:而对于

15、正态分布,我们可以求出一些重要统计量的精确分布,这就是:二、几种常用的抽样分布:(正态分布中的几种统计量的分布)把分布,分布,分布,统称为“统计三大分布”。1、正态分布由正态分布的性质,可得如下结论:定理:设相互独立,,是关于的任一确定的线性函数(), 则也服从正态分布,即:。从而有:若()是来自总体的一个样本,为样本均值,则,由上述结论可知:的期望与的期望相同,而的方差却比的方差小的多,即的取值将更向集中。2、 分布1)、定义:设()是来自总体 的一个样本,则称统计量:所服从的分布是自由度为(指上式中所含独立变量的个数)的分布。记作:的概率密度函数为: ,其中:,显然, ,且,即符合密度函数

16、性质。事实上,2) 分布的性质I、分布的可加性:设,且与相互独立,则:+II、若,则,事实上,因为,则:,所以:;3) 结论:设()为来自总体的一个样本,,为已知常数,则:I ) 统计量 (当=0时也成立)II) 样本均值与样本方差相互独立,且统计量。对I,事实上若,则,所以;对II,参阅有关数理统计的课本。3、分布1) 定义:设,且与相互独立,则称随机变量:所服从的分布是自由度为的分布,记为,分布又称为学生氏(Student)分布。分布的概率密度函数为: 。2) 分布的特点(性质)。I、关于=0对称;II、在=0达最大值;III、的轴为水平渐近线;IV、;即时,分布,一般地,当>30时

17、,分布与非常接近。V、当较小时,分布与有较大的差异,且对有,其中。即分布的尾部比的尾部具有更大的概率。VI、若,则 时,3) 结论:I)设()是来自总体的一个样本,则统计量:,事实上,由,又,且与相互独立,则与相互独立,由分布的定义,所以 II)设()是来自总体的一个样本,(是来自总体的一个样本,且它们是相互独立的,则统计量,其中, 事实上,且与相互独立,所以:,即:;又,且它们相互独立,由分布的可加性,则 。由分布的定义:4、分布1) 定义:设,且与相互独立,则称随机变量所服从的分布是自由度为的分布,记作:,其中:为第一自由度,为第二自由度。由定义,显然有:;若,则。的概率密度函数为: 说明:先求出 的联合密度函数,再令,求出()的联合,注意到独立,所以的边缘密度函数,也即的密度函数。2) 分布的性质(特点)I. 密度曲线不对称(偏态)II. 若,且与独立,则:III. 若,则IV. 当时,当时,注:(利用)3) 结论:设()是来自总体的一个样本,(是来自总体的一个样本,且它们是相互独立,则,事实上,由分布的定义,则:,其中,;四、分位数:定义:设为某变量的分布函数, 若有使,则称为此概率分布的分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论