《反比例函的图像与性质》教学设计_第1页
《反比例函的图像与性质》教学设计_第2页
《反比例函的图像与性质》教学设计_第3页
《反比例函的图像与性质》教学设计_第4页
《反比例函的图像与性质》教学设计_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、知识与技能过程与方法情感、态度与价值观反比例函数的图像与性质教学设计、概述本节课属于人教版教材八年级下学期第17章第一节“反比例函数”的内容,该内容分三个课时,本节课是第二课时,内容是“反比例函数的图像和性质”。本节课主要是通过列表、描点、连线等手段,能熟练地画出反比例函数的图像,并借助于函数图像, 通过数形结合的方法,观察、分析、归纳出反比例函数的性质,并利用这些函数性质,分析并解决一些简 单的实际问题。函数是代数的核心知识,也是学生学习代数的难点。初中阶段所学习的函数主要有:一次函数、反比 例函数和二次函数,高中阶段还要进一步学习哥函数、对数函数、指数函数和三角函数。从宏观方面来看,之前学

2、习的函数、正比例函数、一次函数等概念,为反比例函数的学习打下了一定 的基础。学生可以根据已有的知识和经验,通过联系、类比的方式学习反比例函数。通过学习反比例函数, 进一步深化对函数概念的理解和掌握。同时,通过本节课内容的学习,还可为后续高中阶段学习募函数、 双曲线方程等相关内容奠定基础。从微观方面来看,上一节学习了反比例函数的概念,通过本节课对反比例函数的图像和性质的研究, 为下一节学习反比例函数的实际应用提供知识基础。因而本节内容起着承上启下的作用,有着举足轻重的 重要地位。反比例函数在生活中应用十分广泛,体现在自然科学、工程技术,甚至是人文社会科学中,应用反比 例函数的数学模型,可以更好地

3、刻画现实世界中的数量关系,借此可培养学生数学建模的思想和数学应用 的意识。、教学目标1 .能正确画出反比例函数的图象, 进一步熟悉画函数图象的主要方法和步骤;2 .理解和掌握反比例函数的性质。77通过从“数”到“形”,以“形”辅“数”的方法,促进学生掌握数形结 合的方法;2 .通过引导学生类比一次函数的研究方法,来研究反比例函数的图象和性 质,以此培养学生的类比思想和迁移能力。3 .通过引导学生正确地对函数图像的观察、分析和抽象、概括,培养学生的 观察能力和抽象概括能力,增强学生探究问题的本领;4 .在描点作图和分析探究的过程中,要逐步培养学生掌握分类讨论的思想和从特殊到一般的研究问题的方法。

4、1 .在动手作图的过程中, 体会“做数学”的乐趣,养成勤于动手、善于思考、勇于探索、乐于交流的习惯;2 .自主探究反比例函数性质的过程中,培养学生积极参与和勇于探索的精神;3 .在探究活动中培养学生严谨的科学态度和勇于探索的科学精神;在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟。j教学重点:通过学习研究反比例函数的图像和性质的过程,促进学生掌握研究函数性质的一般方法, 培养学生分析问题和解决问题的能力。理由:作图过程是在“数”与“形”的“相互作用”下完成的,结合函数图像探究函数的性质是重要 的研究方法,通过探究过程让学生掌握探究问题的一般过程与方法更为重要,这是由“知识本位”向

5、“能 力本位”过渡的必然要求。教学难点:画图时如何恰当取点是第一难点;通过图像如何探究出反比例函数的性质是第二难点。理由:由于取点要具有全面性、代表性和典型性,才能相对正确或容易地作出函数的图像,这对刚开 始学习函数的学生而言,具有一定的难度;“探究函数性质”这一问题开放性较强,学生头脑中也没有单调性、对称性、逼近性等预设的函数性质概念,因而这就给学生的思考带来了一定的难度。三、学习者特征分析1、从八年级学生的学习特点来看(1)知识基础方面。之前已经学习过“正比例函数”的内容,对函数已经有了初步的认识,在此基础 上研究讨论反比例函数图像及其性质对后继学习产生积极影响。学生可以结合实例经历列表、

6、描点、作图 等活动,理解函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动空间,进而掌握研究函 数性质的一般方法,提升分析问题、解决问题的能力。但在画反比例函数的图像(怎样取点,点的分布状 况,怎样连线,图像的无限趋近坐标轴的特征)以及由反比例函数的图像归纳出反比例函数的性质对于学 生现有的认知水平有一定的挑战。(2)思维水平方面。中学时培养学生抽象思维的重要阶段,由具体形象思维向抽象逻辑思维过渡。八 年级学生具备了较强的类比学习能力和总结归纳能力,已经具有函数的相关知识,并且对函数变化过程也 有一定的认识,但八年级学生初次接触双曲线这种函数图像,在理解和认知上存在一定的困难。(3)

7、心理特点方面。年龄偏小,上课积极活跃,有较强的求知欲和表现欲,但注意力往往不够持久, 容易出现注意力转移和分散的现象。函数是研究两个变量之间的关系的模型,具有抽象性,学生往往畏惧 学习运有抽象思维的内容。学生对于学习函数、学好函数的信心等方面存在差异,所以设置开放式的题目 让不同层次的学生都能得到发展,并通过动手设计和小组交流,尊重学生的个体差异,尽可能让每个学生 都学有所获。(4)学习态度方面。要使学生积极而高效的掌握知识,必须在教学过程中关注学生的兴趣、动机、情 感、气质、意志、品德等非智力因素所形成的学习态度。它们比学生的智力水平和知识本身更重要。适当 的给予鼓励和评价,培养乐于探索、勇

8、于探索的精神。2、从我校学生的实际情况来看通过平时的交流沟通了解到,学生多来自条件优越的家庭,基本能力和技能适中,学习态度较端正, 但缺乏学习的内驱力,缺乏自主探究问题和解决问题的精神。因此在教学中创设自主探索交流合作的环境, 通过动手操作设计,产生认知冲突:反比例函数的图像应该是怎样的?通过启发式教学不断激发学生探求 新知的热情,通过动手画图小组展示,增强他们学习函数的自信心。为了高效实现教学目标,借助于计算 机进行辅助教学,探究性质时利用几何画板呈现更多的反比例函数图像,把抽象转化为直观,激发学 生学习的主观能动性,使优化教学效果。四、教学策略选择与设计根据奥苏贝尔的“有意义接受学习”的理

9、论,以及新课标中所倡导的“自主探索、合作交流、动手实 践”的学习方式,考虑到教学的实效性和高效率,本节课以启发式、探究式的讲解为主,适当辅之以自主 探索和合作交流,充分体现“以学生为主体,教师为主导”的教学理念。1、抛锚式教学策略的应用“抛锚式教学”鼓励学习者积极地建构有趣的、真实的情境,从而产生学习的需要。教师首先利用一 个“设计面积为6的菜园”的实际问题,即使“锚”,用以激发学生的学习兴趣和主动精神,再通过动手设 计,展开讨论,让学生学会独立识别问题、提出问题、解决真实问题。在学生通过观察四个长方形长与宽的长度变化得出规律后,教师由特殊到一般提出本节课的课题:反比例函数的图像与性质。在本节

10、课最后, 把设计的四个长方形与反比例函数的图像结合,通过“数”与“形”的结合,让学生深刻理解函数的本质 内涵,使整个教学设计手为首尾呼应,浑然一体。2、脚手架教学策略的应用数学教学的过程应该是从“无”开始、逐步进入到“有”的过程。“脚手架理论”作为一种教学策略和教学工具,以问题串的设计方式来引导学生分析反比例函数可以从“数”与“形”两个角度展开,每一个 问题的设问相当于是脚手架,让学生通过学习建构出真正属于自己的所理解、探索到的知识。在画反比例 函数的图像前,通过问题串的设问为学生搭建解决问题要寻找适当的研究方法。在取点描绘图像和图像纠 错环节,通过交互式脚手架,教师先向学生提问,进而模拟示范

11、画反比例函数图像,最后分组画图、合作 交流,在轻松的氛围中突破画图的难点。3、弹性预设和动态生成的教学策略的应用重视课堂教学“弹性预设和动态生成”的过程,使教育活动过程焕发生命的活力。设计中体现“学情 预设”环节,给整个教学留下弹性的空间,对学生可能出现的反应作出预测。一个开放性强的设问,让学 生发散思维大胆猜想,提升能力。对于反比例函数图像位于不同象限由k值决定,只是强调可能,考虑学生可以从“数”与“形”两个角度去验证猜想。4、过程性变式教学策略的应用利用“变式理论”设计习题,结合反比例函数的图像和性质,从简单“练习题”向较为复杂的“组合 题”过渡,渗透一题多解,一题多变,一法多用的思想,通

12、过适当的引申和变式,培养学生在复杂背景中 辨别条件的能力。本课时设计体现了过程学习、建构学习、半探究式学习的教学目标,从提出问题-教师引导式探究-学生自主探究-合作交流-引导学生概括归纳等环节的设置,积极调动学生的学习热情,把大多数的课题时间 交给学生去思考、去交流,教师还能从元认知的角度启发思考问题的策略,培养学生的探索能力。五、教学资源与工具设计1、学习环境。传统教室,把全班同学按四人一个小组的标准分成几个小组,桌子拼在一起。2、几何画板的使用。利用多媒体来辅助教学,结合画面演示画图,把“反比例函数的图像无限逼 近坐标轴”这一抽象的概念清晰的展示在学生面前,把抽象内容直观化、简单化,让学生

13、对图像的感性认 识上升到理性认识,有利于学生创新精神的发展,有利于突破本节课的难点。在研究反比例函数y夕和x6、y一之间的关系时,利用几何圆板把两个函数图像放在一个平面直角坐标中,一个图像用红色,一个x图像用绿色,让学生直观观察两幅图像的对称性。3、实物投影仪的使用。 在画图过程中,利用实物投影仪来展示学生的作品,及时纠错。在探索反比例 函数的性质时,通过实物投影仪把每个小组代表的作品集中展示,从自己的作品中进一步探索性质,也提 高学生学习的自信心。4、教具准备。每个人准备一张 B4大小的纸,上面画有四个完整的平面直角坐标系填空取点的表格5、网络资源。(待补充)通过计算机网络收集大量的数学应用

14、事例或专题学习网站,以开阔学生的视 野,学生也能从中体会到数学在实际应用中的作用。六、教学过程教学过程师生活动设计意图设计依据备注温故复习旧知:1、正比例函数的概念及其性质2、反比例函数的概念教师提问 学生回答复习巩固,温故知新奥苏贝尔:“任何学习知新创设情境T1:反比例函数到底 反在何处 呢?.情境探究:有一块长方形的菜地,长为 x ,宽为y ,面 积为6,可以怎样设计这块菜地呢?(以 1厘 米为,个单位)大家动手回一回。学情预设学生可能设计出多种面积为6的长方形,选择四幅图像并排的展示,例如教师巡视,观 察学生设计 成果,学生积 极思考阱动 手回图,小组 交流讨论寻找新 知识的生长 点,建

15、立新知 与旧知的联 系恰当的问题 情境,能引发 学生的认知 冲突,使学生 产生明显的 意识倾向和 情感共鸣,激 发他们的求 知欲和探索 精神都是建立在 学生已有知 识和经验基 础之上。”从心理学角 度分析,人容 易对已有经 验和熟悉的 事物引起共 鸣6511.2431.52 一,一一 6由面积是6可知xy 6 ,即y ,这是我们 x知道的反比例函数,从图形对比可以发现,当X不断增大时,y却不断减小引出课题:接卜来抽象研究反比例函数ky (k 0) x具有下放性 的一个问题, 在学生从无由问题产生考虑T2:函数是描述变量变化相依关系的数学模到有的建构困惑;到教 ,一,一一,k,过程中给予多兀智能

16、理学的型,在反比仞函数y (k 0)中,y随x的充分的思考论时效x变化们变化的。那么,y随x变化的过程中,空间,任何层性,思呈现出怎样的特点和规律呢?次的学生都考的能展开思考,时间问题难度大,学生思考存在困难,直接过具有广泛度,不能渡到下一个问题提升能力太长从解析式的角度进行初步探索 kT3:静态分析y (k 0),不易看出变化的教师提问,引渗透“数形结体现新课标受研x导学生寻找合”思想,学中“以学生为究一特征和规律,我们应借助什么工具来研究这种合适的研究习科学研究主体”的理念次函特点和规律呢?工具,学生思问题和解决数方考回答问题的方法法的是学习的核影响动心,提升,产生手.能力知识操.的正作迁

17、移探究规律解决问题前T4:如何一次函数的研究方法,我们考虑在平借由函数图必须对方案面直角坐标系中研究反比例函数像解决函数进行预设ky (k 0),那么应怎样研究?性质是函数图像的重要x学情预设应用,之前学习过一次囱数性质的研究方法,通过图像进行观察归纳,大部分学生都能想到画反比例函数的图像, 步巩固画函数图像的基本 步骤。 k . 一 T5:怎样回出反比例函数 y (k 0)的图像 x呢?具体步骤:列表、描点、连线 k . 一 ,一T6:对于反比例函数 y 一(k 0),如取x/_ck x 1, y k;取x 2, y 一,下面我们就2一个具体的函数,之前情境中的反比例函数6Ly 一,要回出它

18、的图像,怎样取点呢?x学情预设 情境中的反比例函数自变量 x的值都为正数,x能取0吗?能取负数吗?怎样取点能把图像画的更精确些呢?全面性:x既能取正数,又能取负数Y代表性:使点均匀的分布典型性:使计算简便的关注回图中可能出现的错误:取点时,都取正值,导致只画出一支曲线;连线时习惯用线段,导致出现“硬转弯”的折线图;惯性的过原点或与两坐标轴相交; 取的点不够多,分布不均,使图像失真T7:观察这个图像,有什么特征?教师示范画 图过程,学生 思考怎样取 点,动手操作 回图,教师及 时纠错回顾画函数 图像的步骤, 为下一步回 图埋卜伏笔使学生产生 困惑,体会“从特殊开 始,由特殊到 一般”的规律 启发

19、学生思 考,取点要考 虑全面,有代 表性、典型 性、全面性。 这是教学中 需要突破的 一个难点预设学生可 能出现的各种答案,尊重 学生的思考, 充分发挥学对于事物的 认知规律都 是从具体到 抽象,从特殊 到一般根据“脚手 架”原理,培 养学生的能 力弹性预设 动态生成 以学定教考虑 到教 学效 率,由 教师 启发 式提 问与 探究 式讲 解相 结合 的方 式进 行师生互动,对预学情预设反比例函数的图像是双曲线(由两条曲线组成)图像无限延伸,会与x轴或 y轴相交吗?二假如相交,可从解析式的角度去分析,k一 一y (k 0),因为k 0得到y 0,所 x以图像不与 x轴相交;因为x 0,所以图像不

20、与y轴相交。图像无限延伸,会与x轴或 y轴平行吗?=假如与x轴平行,x值不断增大而y值k . 一不改变,从解析式 y (k 0)变形为xxy k可知,不成立,同理可知也不会与 y轴平行图像中心对称,也会关于直线y x或直线yx对称生的主体性, 使课堂结构 生动,预设有 弹性,并根据 学生的回答 以学定教设的 可能 性进 行不 断的 调整小组合作深入T8:刚才只是一个具体的函数,是“个性”,k我们需要把握反比例函数 y (k 0)具有 x的共性,其他的反比例函数是否具有一样的特征呢?学生分组画 图渗透概况的 思想,让学生 体会不能一 次性强行归 纳结论,让学 生意识到总 结规律画一体现“个性与

21、共性”的关系探究T9:展示四个小组的图像,分别是6一63一一3 一、y _和丫_、y 和丫一,可以发现,两种图像的位置完全不向,其中两个分布在第一、三象限,另两个分布在第二、四象限,为什么会这样呢?学情预设图像分布在不同的象限可能是由k值决定的. 从“形”的角度来验证。通过几何画板的演示,让学生列举其他 k 0的反比例函数,动态演示出图像,让学生直观感受 从“数”的角度来验证。k . .、. 一从y (k 0)可知xy k , k为te值即x与 的y乘族为定值。X x, y都为正,图像在A象限k 0时,x, y问号x, y都为负,图像在第二象限x为负、y为正,图像在第一象限k 0时一x,y异号 x为正、y为负,图像在第四象限63T10:观祭反比例函数 y 2和y 3的图像,它们有什么共同特征?.得出结论:(1) k 0,在每个象限内,y随着x的增大而减小个函数图像 并不够数由“数”到 “形”、由“形”到“数” 的转化关系, 以“数”与“形”的转化 为途径,探究 函数的本质 规律,提升学 生分析归纳 的能力,深刻 理解分布的 象限由k值 决定从图像观察 总结规律是 基本能力,观 察是科学研 究的基础。类 比一次函数 图像的研究 总结规律直观感知 观察发现利用 实物 投影仪利用 多媒 体工 具使 教学 具有 生动 性和 直观 性,渗 透分 类讨 论思 想(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论