下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合 适的观看比例,答案解析附后。关闭Word文档返回原板块。核心素养测评三十七JkH? Ar rtj;(30分钟60分)一、选择题(每小题5分,共20分)1.70周年国庆阅兵活动向全世界展示了我军威武文明之师的良好形 象,展示了科技强军的伟大成就以及维护世界和平的坚定决心,在阅 兵活动的训练工作中,不仅使用了北斗导航、电子沙盘、仿真系统、 激光测距机、迈速表和高清摄像头等新技术装备,还通过管理中心对 每天产生的大数据进行存储、分析,有效保证了阅兵活动的顺利进行, 假如训练过程中第一天产生的数据量为a,其后每天产生的数据量都 是前一
2、天的q(q>l)倍,那么训练n天产生的总数据量为()A. aqZB. aqnXz l-q一十) ky.Lq【解析】选D.训练过程中第一天产生的数据量为a,其后每天产生的 数据量都是前一天的q(ql)倍,那么训练n天产生的总数据量为:cr-i a(LqM)Sn=a+aq+aq-+, +aq"=i-q2.古代数学著作九章算术有如下问题:“今有女子善织,日自倍, 五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,己知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所 需的天数至少为()A. 10B.
3、9C. 8D. 7【解析】选C.设该女子第一天织布x尺,则=5,解得x二一,1-231所以前n天织布的尺数为示2T),由金7) 230,得2n2187,解得n的最小值为8.3.我国古代数学名著九章算术中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列2 3 4 n第二步:将数列的各项乘以;,得到一个新数列ab电a3,an.则 a1a二+a2a3+a3a什 +%-田()(?3-l)2 B.472 (n+1) D.4【解析】选C.由题意知所得新数列为1义丁乂丁义,/X,所以(n- 1) X71aia2+a2a3+a3ai+e +an-ian=-LHH4 1X2 2X3 3X4M(
4、1二)+G)+G)+)3.4 2/ 23/ 34/ n-L n 4 I nJ 44.(多选)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗 所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为A. 9B. 10C. 11D. 12【解析】选BC.设在x个坑处最佳,则x£N.且1WxW20,则所有同学 路程为:y=l+2+ (x-1) +1+2+(20-x)(2O-x)(21-x) =-122=x2-21x+210,又因为x£N.,所以当x=1
5、0或x=11时y最小.二、填空题(每小题5分,共20分)5.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上 再连接正方形,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为则其 最小正方形的边长为.【解析】由题意,得正方形的边长构成以丁为首项,以3为公比的等比数列,现已知共得到1 023个正方形,则有1+2+2=1 023,所以一 9n=10,所以最小正方形的边长为(?) Wp答案W6 . 一种专门占据内存的计算机病毒开机时占据内存1 MB,然后每3秒 自身复制一次,复制后所占内存是原来的2倍,那么开机 秒,该病毒占据内存8 G
6、B. (1 GB=210 MB)【解析】由题意可知,病毒每复制一次所占内存的大小构成一等比数 列,且电=2, q=2,所以a=2则2n=8X所以n=13.即病毒共 复制了 13次,所以所需时间为13X3=39(秒).答案:397 .从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1 升混合溶液后又用水填满,以此继续下去,则至少应倒 次后才能使纯酒精体积与总溶液的体积之比低于10%.【解析】设倒n次后纯酒精与总溶液的体积比为an,则口二G),由题意知Q <1。,所以n24.答案:48 .定义“规范01数列” aj如下:aj共有2nl项,其中m项为0,m项 为1,且对任意kW2m,
7、 ai, a:, ak中0的个数不少于1的个数.若m=4, 则不同的“规范01数列”的个数为. 【解析】由题意可得ax=0, as=l, a2, a3, a;中有3个0, 3个1,且满足对任意kW8,都有a1,a2,凯中0的个数不少于1的个数,利用列举法可得不 同的“规范 01 数列”有 00 001 111,00 010 111,00 011 011,00 011 101,00 100 111,00 101 011,00 101 101,00 110 011,00 110 101,01 000 111, 01 001 011,01 001 101,01 010 011,01 010 101,
8、共 14 个. 答案:14三、解答题(每小题10分,共20分)9 .某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年 年底固定给股东们分红500万元.该企业2018年年底分红后的资金为 1 000万元.(1)求该企业2022年年底分红后的资金.(2)求该企业从哪一年开始年底分红后的资金超过32 500万元.【解析】设小为(2018+n)年年底分红后的资金,其中 n£N:则 ai=2X1 000-500=1 500,a2=2 X 1 500-500=2 500,an=2an-500 (n 2 2).所以 a-500=2(a_-500) (n2),即数列a0-500是首项为a-
9、500=1 000,公比为2的等比数列,所以 a-500=1 000 X2n-1, 所以 aLl 000X2+500.(1)a4=1 000X24-1+500=8 500,所以该企业2022年年底分红后的资金为8 500万元.由an>32 500,即2n-1>32,得n>6,所以该企业从2025年开始年底分 红后的资金超过32 500万元.10 .科学研究证实,二氧化碳等温室气体的排放(简称碳排放)对全球 气候和生态环境产生了负面影响,环境部门对A市每年的碳排放总量 规定不能超过550万吨,否则将采取紧急限排措施.己知A市2018年 的碳排放总量为400万吨,通过技术改造和倡
10、导低碳生活等措施,此 后每年的碳排放量比上一年的碳排放总量减少10%.同时,因经济发展 和人口增加等因素,每年又新增加碳排放量m万吨(m0).(1)求A市2020年的碳排放总量(用含m的式子表示).若A市永远不需要采取紧急限排措施,求m的取值范围.【解析】设2019年的碳排放总量为a“ 2020年的碳排放总量为a2, 由已知a尸400X0. 9+m,a2=0. 9 X (400 X 0. 9+m) +m=400 X 0 . 92+0. 9m+m=324+1.9m.(2) a3=0. 9 X (400 X 0. 92+0. 9m+m) +m=400 X 0. 93+0. 91+0. 9m+m, ,an=400X0. 9n+0. 9.m+Ch 9n-2m+-+0. 9m+m1-0. 9n=400X0. 9n+m1-0. 9=400X0. 9n+10m(1-0.9n)=(400-10m) 0. 9n+10m.由已知有 Vn£N", an550,当400-10m=0即m=40时,显然满足题意;当400-10m>0即m<40时,由指数函数的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论