版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、知识回顾知识回顾1、圆是轴对称图形、圆是轴对称图形2、圆是旋转对称图形,无论绕圆心旋转多少度,它、圆是旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合。(圆的旋转不变性)都能与自身重合。(圆的旋转不变性)圆的对称性:圆的对称性: 垂径定理及其推论垂径定理及其推论 ? 圆心角圆心角:我们把:我们把的角叫做的角叫做圆心角圆心角.OBA概念概念DABO找出右上图找出右上图中的圆心角。中的圆心角。圆心角有:圆心角有:AOD,BOD,AOB显然显然AOBAOBOAB探究一探究一AB.ABA B 如图,在如图,在 O中,将圆心角中,将圆心角AOB绕圆心绕圆心O旋旋转到转到AOB的位置,你能发现哪些等量
2、关系?的位置,你能发现哪些等量关系?为什么?为什么?可得到:可得到:OAB探究一探究一 思考:如图,在等圆中,如果思考:如图,在等圆中,如果AOBAO B,你发现的等量关系是否依然成立?为什么?你发现的等量关系是否依然成立?为什么?O AB由由AOBAO B可得可得到:到:.ABA B弧、弦与圆心角的关系定理弧、弦与圆心角的关系定理在同圆或等圆中,在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,所对的弦也相等所对的弦也相等小结小结思考思考定理定理“在同圆或等圆中,在同圆或等圆中,相等的圆心角所对的相等的圆心角所对的弧相等,所对的弦也相等弧相等,所对的弦也相等”中,可否把条件
3、中,可否把条件“在同圆或等圆中在同圆或等圆中”去掉?为什么?去掉?为什么?(1)、)、如果如果 那么那么AOBAOB, 成立吗成立吗 ?探究二探究二在同圆中,在同圆中,.ABA B(1)成成 立立(2)、)、如果如果 那么那么AOBAOB, 成立吗成立吗 ?探究二探究二在同圆中,在同圆中, .ABA B(2)成成 立立弧、弦与圆心角的关系定理弧、弦与圆心角的关系定理1、在同圆或等圆中,、在同圆或等圆中,相等的相等的圆心角圆心角所对的所对的弧弧相等,所对的相等,所对的弦弦也相等也相等小结小结2、在同圆或等圆中、在同圆或等圆中,相等的,相等的弧弧所对的所对的圆心角圆心角_, 所对的所对的弦弦_;3
4、、在同圆或等圆中、在同圆或等圆中,相等的相等的弦弦所对的所对的圆心角圆心角_,所对所对的的弧弧_相等相等相等相等相等相等相等相等在同圆或等圆中,两个在同圆或等圆中,两个圆心角、两条弧、两条圆心角、两条弧、两条弦中有一组量相等,它弦中有一组量相等,它们所对应的其余各组量们所对应的其余各组量也相等也相等 如图,如图,AB、CD是是 O的两条弦的两条弦(1)如果)如果AB=CD,那么,那么_,_(2)如果)如果 ,那么,那么_,_(3)如果)如果AOB=COD,那么,那么_,_(4)如果)如果AB=CD,OEAB于于E,OFCD于于F,OE与与OF相等吗?相等吗?为什么?为什么?CABDEFOAOB
5、COD AB=CDAOBCOD AB=CD练习练习CD=ABCD=ABCD=AB OEOF证明:证明: AB=ACABC是等腰三角形是等腰三角形又又ACB=60, ABC是等边三角形是等边三角形 , AB=BC=CA. AOBBOCAOC.ABCO例题例题AC=AB例例3 如图,在如图,在 O中,中, AB=AC ,ACB=60,求证:求证:AOB=BOC=AOC60 1、如图,、如图,AB是是 O 的直径,的直径, COD=35,求,求AOE 的度数的度数AOBCDE BOC= COD= DOE=35 1803 35AOE 75解:解:练习练习=DECD=BC=DECD=BC练习练习2、如图,如图,AD=BC, 比较比较AB与与CD的长度,并证明你的结的长度,并证明你的结论。论。 OBCAE3、如图,、如图,BC为为 O的直径,的直径,OA是是 O的半径,的半径,弦弦BEOA,求证:求证:AC=AE 练习练习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋租赁协议合同书范本
- 二手住宅买卖协议合同
- 房地产合作合同的签订与执行
- 幼儿园办园基本设备清单(参考)
- 仓储租赁协议书格式
- 标准建设工程勘察合同文本
- 信息安全咨询协议书范本
- 膜层眼镜片课程设计
- 2024年建房合同协议书模板
- 公民人身伤害赔偿协议书示例
- 热力设备安装与检修
- BOPET薄膜的生产工艺和应用
- 【九年级】2020-2021年上海市中考数学试卷(原卷+答案解析版)
- 外墙清洗记录单
- 垃圾分类与资源化处置建设项目计划书
- 模拟联合国大会流程及培训指导
- 保险基础知识题库解析
- 公路工程施工质量监理工作手册
- 临检中心检验科主任会议 6.1质量、速度与安全:POCT网络化管理
- 牙龈病PPT课件可编辑
- 函数的零点与方程的解(说课课件)
评论
0/150
提交评论